On the randomized complexity of Banach space valued integration

Stefan Heinrich
Department of Computer Science
University of Kaiserslautern
D-67653 Kaiserslautern, Germany
e-mail: heinrich@informatik.uni-kl.de

Aicke Hinrichs
Institute of Mathematics
University of Rostock
D-18051 Rostock, Germany
e-mail: aicke.hinrichs@uni-rostock.de

Abstract

We study the complexity of Banach space valued integration in the randomized setting. We are concerned with r-times continuously differentiable functions on the d-dimensional unit cube Q, with values in a Banach space X, and investigate the relation of the optimal convergence rate to the geometry of X. It turns out that the n-th minimal errors are bounded by $c n^{-r / d-1+1 / p}$ if and only if X is of equal norm type p.

1 Introduction

Integration of scalar valued functions is an intensively studied topic in the theory of information-based complexity, see [12], [10], [11]. Motivated by applications to parametric integration, recently the complexity of Banach space valued integration was considered in [2]. It was shown that the behaviour of the n-th minimal errors $e_{n}^{\text {ran }}$ of randomized integration in $C^{r}(Q, X)$ is related to the geometry of the Banach space X in the following way: The infimum of the exponents of the rate is determined by the supremum of p such that X is of type p. In the present paper we further investigate this relation. We establish a connection between n-th minimal errors and equal norm type p constants for n vectors. It follows that e_{n}^{ran} is bounded by $c n^{-r / d-1+1 / p}$ if and only if X is of equal norm type p.

2 Preliminaries

Let $\mathbb{N}=\{1,2, \ldots\}$ and $\mathbb{N}_{0}=\{0,1,2, \ldots\}$. We introduce some notation and concepts from Banach space theory needed in the sequel. For Banach spaces X and Y let B_{X} be the closed unit ball of X and $\mathscr{L}(X, Y)$ the space of bounded linear operators from X to Y, endowed with the usual norm. If $X=Y$, we write $\mathscr{L}(X)$. The norm of X is denoted by $\|\cdot\|$, while other norms are distinguished by subscripts. We assume that all considered Banach spaces are defined over the same scalar field $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$.

Let $Q=[0,1]^{d}$ and let $C^{r}(Q, X)$ be the space of all r-times continuously differentiable functions $f: Q \rightarrow X$ equipped with the norm

$$
\|f\|_{C^{r}(Q, X)}=\max _{0 \leq|\alpha| \leq r, t \in Q}\left\|D^{\alpha} f(t)\right\|,
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right),|\alpha|=\left|\alpha_{1}\right|+\cdots+\left|\alpha_{d}\right|$ and D^{α} denotes the respective partial derivative. For $r=0$ we write $C^{0}(Q, X)=C(Q, X)$, which is the space of continuous X-valued functions on Q. If $X=\mathbb{K}$, we write $C^{r}(Q)$ and $C(Q)$.

Let $1 \leq p \leq 2$. A Banach space X is said to be of (Rademacher) type p, if there is a constant $c>0$ such that for all $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in X$

$$
\begin{equation*}
\left(\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p}\right)^{1 / p} \leq c\left(\sum_{k=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p} \tag{1}
\end{equation*}
$$

where $\left(\varepsilon_{i}\right)_{i=1}^{n}$ is a sequence of independent Bernoulli random variables with $\mathbb{P}\left\{\varepsilon_{i}=\right.$ $-1\}=\mathbb{P}\left\{\varepsilon_{i}=+1\right\}=1 / 2$ on some probability space $(\Omega, \Sigma, \mathbb{P})$ (we refer to $[9,7]$ for this notion and related facts). The smallest constant satisfying (1) is called the type p constant of X and is denoted by $\tau_{p}(X)$. If there is no such $c>0$, we put $\tau_{p}(X)=\infty$. The space $L_{p_{1}}(\mathcal{N}, \nu)$ with (\mathcal{N}, ν) an arbitrary measure space and $p_{1}<\infty$ is of type p with $p=\min \left(p_{1}, 2\right)$.

Furthermore, given $n \in \mathbb{N}$, let $\sigma_{p, n}(X)$ be the smallest $c>0$ for which (1) holds for any $x_{1}, \ldots, x_{n} \in X$ with $\left\|x_{1}\right\|=\cdots=\left\|x_{n}\right\|$. The contraction principle for Rademacher series, see ($[7]$, Th. 4.4), implies that $\sigma_{p, n}(X)$ is the smallest constant $c>0$ such that for $x_{1}, \ldots, x_{n} \in X$

$$
\begin{equation*}
\left(\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p}\right)^{1 / p} \leq c n^{1 / p} \max _{1 \leq i \leq n}\left\|x_{i}\right\| . \tag{2}
\end{equation*}
$$

We say that X is of equal norm type p, if there is a constant $c>0$ such that $\sigma_{p, n}(X) \leq c$ for all $n \in \mathbb{N}$. Clearly, $\sigma_{p, n}(X) \leq \tau_{p}(X)$ and type p implies equal norm type p.

Let us comment a little more on the relation of the different notions of type which are used here and in the literature. The concept of equal norm type p was first introduced and used by R. C. James in the case $p=2$ in [6]. There it is
shown that X is of equal norm type 2 if and only if X is of type 2 . This result is attributed to G. Pisier. Later, it even turned out in [1] that the sequence $\sigma_{2, n}(X)$ and the corresponding sequence $\tau_{2, n}(X)$ of type 2 constants computed with n vectors are uniformly equivalent. In contrast, for $1<p<2$, L. Tzafriri [13] constructed Tsirelson spaces without type p but with equal norm type p. Finally, V. Mascioni introduced and studied the notion of weak type p for $1<p<2$ in [8] and showed that, again in contrast to the situation for $p=2$, a Banach space X is of weak type p if and only if it is of equal norm type p.

Throughout the paper c, c_{1}, c_{2}, \ldots are constants, which depend only on the problem parameters r, d, but depend neither on the algorithm parameters n, l etc. nor on the input f. The same symbol may denote different constants, even in a sequence of relations.

For $r, k \in \mathbb{N}$ we let $P_{k}^{r, X} \in \mathscr{L}(C(Q, X))$ be X-valued composite tensor product Lagrange interpolation of degree r with respect to the partition of $[0,1]^{d}$ into k^{d} subcubes of sidelength k^{-1} of disjoint interior, see [2]. Given $r \in \mathbb{N}_{0}$ and $d \in \mathbb{N}$, there are constants $c_{1}, c_{2}>0$ such that for all Banach spaces X and all $k \in \mathbb{N}$

$$
\begin{equation*}
\sup _{f \in B_{C^{r}(Q, X)}}\left\|f-P_{k}^{r, X} f\right\|_{C(Q, X)} \leq c_{2} k^{-r} \tag{3}
\end{equation*}
$$

(see [2]).

3 Banach space valued integration

Let X be a Banach space, $r \in \mathbb{N}_{0}$, and let the integration operator $S^{X}: C(Q, X) \rightarrow$ X be given by

$$
S^{X} f=\int_{Q} f(t) d t
$$

We will work in the setting of information-based complexity theory, see [12, 10, 11]. Below $e_{n}^{\operatorname{det}}\left(S^{X}, B_{C^{r}(Q, X)}\right)$ and $e_{n}^{\text {ran }}\left(S^{X}, B_{C^{r}(Q, X)}\right)$ denote the n-th minimal error of S^{X} on $B_{C^{r}(Q, X)}$ in the deterministic, respectively randomized setting, that is, the minimal possible error among all deterministic, respectively randomized algorithms, approximating S^{X} on $B_{C^{r}(Q, X)}$ that use at most n values of the input function f. The precise notions are recalled in the appendix. The following was shown in [2].
Theorem 1. Let $r \in \mathbb{N}_{0}$ and $1 \leq p \leq 2$. Then there are constants $c_{1-4}>0$ such that for all Banach spaces X and $n \in \mathbb{N}$ the following holds. The deterministic n-th minimal error satisfies

$$
c_{1} n^{-r / d} \leq e_{n}^{\mathrm{det}}\left(S^{X}, B_{C^{r}(Q, X)}\right) \leq c_{2} n^{-r / d} .
$$

Moreover, if X is of type p and p_{X} is the supremum of all p_{1} such that X is of type p_{1}, then the randomized n-th minimal error fulfills

$$
c_{3} n^{-r / d-1+1 / p_{X}} \leq e_{n}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right) \leq c_{4} \tau_{p}(X) n^{-r / d-1+1 / p} .
$$

As a consequence, we obtain
Corollary 1. Let $r \in \mathbb{N}_{0}$ and $1 \leq p \leq 2$. Then the following are equivalent:
(i) X is of type p_{1} for all $p_{1}<p$.
(ii) For each $p_{1}<p$ there is a constant $c>0$ such that for all $n \in \mathbb{N}$

$$
e_{n}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right) \leq c n^{-r / d-1+1 / p_{1}} .
$$

The main result of the present paper is the following
Theorem 2. Let $1 \leq p \leq 2$ and $r \in \mathbb{N}_{0}$. Then there are constants $c_{1}, c_{2}>0$ such that for all Banach spaces X and all $n \in \mathbb{N}$

$$
\begin{equation*}
c_{1} n^{r / d+1-1 / p} e_{n}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right) \leq \sigma_{p, n}(X) \leq c_{2} \max _{1 \leq k \leq n} k^{r / d+1-1 / p} e_{k}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right) . \tag{4}
\end{equation*}
$$

This allows to sharpen Corollary 1 in the following way.
Corollary 2. Let $r \in \mathbb{N}_{0}$ and $1 \leq p \leq 2$. Then the following are equivalent:
(i) X is of equal norm type p.
(ii) There is a constant $c>0$ such that for all $n \in \mathbb{N}$

$$
e_{n}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right) \leq c n^{-r / d-1+1 / p}
$$

Recall from the preliminaries that the conditions in the corollary are also equivalent to
(iii) X is of type 2 if $p=2$ and of weak type p if $1<p<2$, respectively.

For the proof of Theorem 2 we need a number of auxiliary results. The following lemma is a slight modification of Prop. 9.11 of [7], with essentially the same proof, which we include for the sake of completeness.

Lemma 1. Let $1 \leq p \leq 2$. Then there is a constant $c>0$ such that for each Banach space X, each $n \in \mathbb{N}$ and each sequence of independent, essentially bounded, mean zero X-valued random variables $\left(\eta_{i}\right)_{i=1}^{n}$ on some probability space $(\Omega, \Sigma, \mathbb{P})$ the following holds:

$$
\left(\mathbb{E}\left\|\sum_{i=1}^{n} \eta_{i}\right\|^{p}\right)^{1 / p} \leq c \sigma_{p, n}(X) n^{1 / p} \max _{1 \leq i \leq n}\left\|\eta_{i}\right\|_{L_{\infty}(\Omega, \mathbb{P}, X)}
$$

Proof. Let $\left(\varepsilon_{i}\right)_{i=1}^{n}$ be independent, symmetric Bernoulli random variables on some probability space $\left(\Omega^{\prime}, \Sigma^{\prime}, \mathbb{P}^{\prime}\right)$ different from $(\Omega, \Sigma, \mathbb{P})$. Considering $\left(\eta_{i}\right)_{i=1}^{n}$ and
$\left(\varepsilon_{i}\right)_{i=1}^{n}$ as random variables on the product probability space, we denote the expectation with respect to \mathbb{P}^{\prime} by \mathbb{E}^{\prime} (and the expectation with respect to \mathbb{P}, as before, by \mathbb{E}). Using Lemma 6.3 of [7] and (2), we get

$$
\begin{aligned}
\left(\mathbb{E}\left\|\sum_{i=1}^{n} \eta_{i}\right\|^{p}\right)^{1 / p} & \leq 2\left(\mathbb{E} \mathbb{E}^{\prime}\left\|\sum_{i=1}^{n} \varepsilon_{i} \eta_{i}\right\|^{p}\right)^{1 / p} \\
& \leq 2 \sigma_{p, n}(X) n^{1 / p}\left(\mathbb{E} \max _{1 \leq i \leq n}\left\|\eta_{i}\right\|^{p}\right)^{1 / p} \\
& \leq 2 \sigma_{p, n}(X) n^{1 / p} \max _{1 \leq i \leq n}\left\|\eta_{i}\right\|_{L_{\infty}(\Omega, \mathbb{P}, X)} .
\end{aligned}
$$

Next we introduce an algorithm for the aproximation of $S^{X} f$. Let $n \in \mathbb{N}$ and let $\xi_{i}: \Omega \rightarrow Q(i=1, \ldots, n)$ be independent random variables on some probability space $(\Omega, \Sigma, \mathbb{P})$ uniformly distributed on Q. Define for $f \in C(Q, X)$

$$
\begin{equation*}
A_{n, \omega}^{0, X} f=\frac{1}{n} \sum_{i=1}^{n} f\left(\xi_{i}(\omega)\right) \tag{5}
\end{equation*}
$$

and, if $r \geq 1$, put $k=\left\lceil n^{1 / d}\right\rceil$ and

$$
\begin{equation*}
A_{n, \omega}^{r, X} f=S^{X}\left(P_{k}^{r, X} f\right)+A_{n, \omega}^{0, X}\left(f-P_{k}^{r, X} f\right) \tag{6}
\end{equation*}
$$

These are the Banach space valued versions of the standard Monte Carlo method $(r=0)$ and the Monte Carlo method with separation of the main part $(r \geq 1)$. The following extends the second part of Proposition 1 of [2].

Proposition 1. Let $r \in \mathbb{N}_{0}$ and $1 \leq p \leq 2$. Then there is a constant $c>0$ such that for all Banach spaces $X, n \in \mathbb{N}$, and $f \in C^{r}(Q, X)$

$$
\begin{equation*}
\left(\mathbb{E}\left\|S^{X} f-A_{n, \omega}^{r, X} f\right\|^{p}\right)^{1 / p} \leq c \sigma_{p, n}(X) n^{-r / d-1+1 / p}\|f\|_{C^{r}(Q, X)} \tag{7}
\end{equation*}
$$

Proof. Let us first consider the case $r=0$. Let $f \in C(Q, X)$ and put

$$
\eta_{i}(\omega)=\int_{Q} f(t) d t-f\left(\xi_{i}(\omega)\right)
$$

Clearly, $\mathbb{E} \eta_{i}(\omega)=0$,

$$
S^{X} f-A_{n, \omega}^{0, X} f=\frac{1}{n} \sum_{i=1}^{n} \eta_{i}(\omega)
$$

and

$$
\left\|\eta_{i}(\omega)\right\| \leq 2\|f\|_{C(Q, X)} .
$$

An application of Lemma 1 gives (7). If $r \geq 1$, we have

$$
S^{X} f-A_{n, \omega}^{r, X} f=S^{X}\left(f-P_{k}^{r, X} f\right)-A_{n, \omega}^{0, X}\left(f-P_{k}^{r, X} f\right)
$$

and the result follows from (3) and the case $r=0$.

Lemma 2. Let $1 \leq p \leq 2$. Then there are constants $c>0$ and $0<\gamma<1$ such that for each Banach space X, each $n \in \mathbb{N}$, and $\left(x_{i}\right)_{i=1}^{n} \subset X$ there is a subset $I \subseteq\{1, \ldots, n\}$ with $|I| \geq \gamma n$ and

$$
\mathbb{E}\left\|\sum_{i \in I} \varepsilon_{i} x_{i}\right\| \leq c n^{1 / p}\left\|\left(x_{i}\right)\right\|_{\ell_{\infty}^{n}(X)} \max _{1 \leq k \leq n} k^{r / d+1-1 / p} e_{k}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right) .
$$

Proof. Since for $n \in \mathbb{N}$

$$
\max _{1 \leq k \leq n} k^{r / d+1-1 / p} e_{k}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right) \geq e_{1}^{\mathrm{ran}}\left(S^{\mathbb{K}}, B_{C^{r}(Q, \mathbb{K})}\right)>0
$$

the statement is trivial for $n<8^{d}$. Therefore we can assume $n \geq 8^{d}$. Clearly, we can also assume $\left\|\left(x_{i}\right)\right\|_{\ell_{\infty}^{n}(X)}>0$. Let $m \in \mathbb{N}$ be such that

$$
\begin{equation*}
m^{d} \leq n<(m+1)^{d} \tag{8}
\end{equation*}
$$

hence

$$
\begin{equation*}
m \geq 8 \tag{9}
\end{equation*}
$$

Let ψ be an infinitely differentiable function on \mathbb{R}^{d} such that $\psi(t)>0$ for $t \in$ $(0,1)^{d}$ and $\operatorname{supp} \psi \subset[0,1]^{d}$. Let $\left(Q_{i}\right)_{i=1}^{m^{d}}$ be the partition of Q into closed cubes of side length m^{-1} of disjoint interior, let t_{i} be the point in Q_{i} with minimal coordinates and define $\psi_{i} \in C(Q)$ by

$$
\psi_{i}(t)=\psi\left(m\left(t-t_{i}\right)\right) \quad\left(i=1, \ldots, m^{d}\right)
$$

It is easily verified that there is a constant $c_{0}>0$ such that for all $\left(\alpha_{i}\right)_{i=1}^{m^{d}} \in$ $[-1,1]^{m^{d}}$

$$
\left\|\sum_{i=1}^{m^{d}} \alpha_{i} x_{i} \psi_{i}\right\|_{C^{r}(Q, X)} \leq c_{0} m^{r}\left\|\left(x_{i}\right)\right\|_{\ell_{\infty}(X)} .
$$

Setting

$$
f_{i}=c_{0}^{-1} m^{-r}\left\|\left(x_{i}\right)\right\|_{\ell_{\infty}^{n}(X)}^{-1} x_{i} \psi_{i}
$$

it follows that

$$
\sum_{i=1}^{m^{d}} \alpha_{i} f_{i} \in B_{C^{r}(Q, X)} \quad \text { for all } \quad\left(\alpha_{i}\right)_{i=1}^{m^{d}} \in[-1,1]^{m^{d}}
$$

Moreover, with $\sigma=\int_{Q} \psi(t) d t$ we have

$$
\begin{aligned}
& \left\|\sum_{i=1}^{m^{d}} \alpha_{i} S^{X} f_{i}\right\|=c_{0}^{-1} m^{-r}\left\|\left(x_{i}\right)\right\|_{\ell_{\infty}^{n}(X)}^{-1}\left\|\sum_{i=1}^{m^{d}} \alpha_{i} x_{i} \int_{Q} \psi_{i}(t) d t\right\| \\
= & c_{0}^{-1} \sigma m^{-r-d}\left\|\left(x_{i}\right)\right\|_{\ell_{\infty}^{n}(X)}^{-1}\left\|\sum_{i=1}^{m^{d}} \alpha_{i} x_{i}\right\| .
\end{aligned}
$$

Next we use Lemma 5 and 6 of [3] with $K=X$ (although stated for $K=\mathbb{R}$, Lemma 6 is easily seen to hold for $K=X$, as well) to obtain for all $l \in \mathbb{N}$ with $l<m^{d} / 4$

$$
\begin{aligned}
e_{l}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right) & \geq \frac{1}{4} \min _{I \subseteq\left\{1, \ldots, m^{d}\right\},|I| \geq m^{d}-4 l} \mathbb{E}\left\|\sum_{i \in I} \varepsilon_{i} S^{X} f_{i}\right\| \\
& \geq c m^{-r-d}\left\|\left(x_{i}\right)\right\|_{\ell_{\infty}^{n}(X)}^{-1} \mathbb{E}\left\|\sum_{i \in I} \varepsilon_{i} x_{i}\right\| .
\end{aligned}
$$

We put $l=\left\lfloor m^{d} / 8\right\rfloor$. Then

$$
\begin{equation*}
m^{d} / 16<l \leq m^{d} / 8 . \tag{10}
\end{equation*}
$$

Indeed, by (9) the left-hand inequality clearly holds for $m^{d}<16$, while for $m^{d} \geq$ 16 we get $\left\lfloor m^{d} / 8\right\rfloor>m^{d} / 8-1 \geq m^{d} / 16$. We conclude that there is an $I \subseteq$ $\left\{1, \ldots, m^{d}\right\}$ with $|I| \geq m^{d}-4 l \geq m^{d} / 2$ and

$$
\begin{aligned}
\mathbb{E}\left\|\sum_{i \in I} \varepsilon_{i} x_{i}\right\| & \leq c m^{r+d}\left\|\left(x_{i}\right)\right\|_{\infty}^{n}(X) e_{l}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right) \\
& \leq c m^{r+d} l^{-r / d+1 / p-1}\left\|\left(x_{i}\right)\right\|_{\ell_{\infty}^{n}(X)} \max _{1 \leq k \leq n} k^{r / d+1-1 / p} e_{k}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right) \\
& \leq c n^{1 / p}\left\|\left(x_{i}\right)\right\|_{\ell_{\infty}^{n}(X)} \max _{1 \leq k \leq n} k^{r / d+1-1 / p} e_{k}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right)
\end{aligned}
$$

where we used (8) and (10). Finally, (8) and (9) give

$$
|I| \geq m^{d} / 2 \geq \frac{m^{d}}{2(m+1)^{d}} n \geq \frac{8^{d}}{2 \cdot 9^{d}} n .
$$

Proof of Theorem 2. The left-hand inequality of (4) follows directly from Proposition 1, since the number of function values involved in $A_{n, \omega}^{r, X}$ is bounded by $c k^{d}+n \leq c n$, see also (16).

To prove the right-hand inequality of (4), let $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in X$. We construct by induction a partition of $K=\{1, \ldots, n\}$ into a sequence of disjoint subsets $\left(I_{l}\right)_{l=1}^{l^{*}}$ such that for $1 \leq l \leq l^{*}$

$$
\begin{equation*}
\left|I_{l}\right| \geq \gamma\left|K \backslash \bigcup_{j<l} I_{j}\right| \tag{11}
\end{equation*}
$$

and

$$
\begin{align*}
\mathbb{E} & \left\|\sum_{i \in I_{l}} \varepsilon_{i} x_{i}\right\| \\
& \leq c\left|K \backslash \bigcup_{j<l} I_{j}\right|^{1 / p}\left\|\left(x_{i}\right)\right\|_{\ell_{\infty}^{n}(X)} \max _{1 \leq k \leq n} k^{r / d+1-1 / p} e_{k}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right), \tag{12}
\end{align*}
$$

where c and γ are the constants from Lemma 2. For $l=1$ the existence of an I_{1} satisfying (11-12) follows directly from Lemma 2. Now assume that we already have a sequence of disjoint subsets $\left(I_{l}\right)_{l=1}^{m}$ of K satisfying (11-12). If

$$
J:=K \backslash \bigcup_{j \leq m} I_{j} \neq \emptyset,
$$

we apply Lemma 2 to $\left(x_{i}\right)_{i \in J}$ to find $I_{m+1} \subseteq J$ with

$$
\begin{equation*}
\left|I_{m+1}\right| \geq \gamma|J| \tag{13}
\end{equation*}
$$

and

$$
\begin{align*}
\mathbb{E} & \left\|\sum_{i \in I_{m+1}} \varepsilon_{i} x_{i}\right\| \\
& \leq c|J|^{1 / p}\left\|\left(x_{i}\right)_{i \in J}\right\|_{\ell_{\infty}(J, X)} \max _{1 \leq k \leq|J|} k^{r / d+1-1 / p} e_{k}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right) \tag{14}
\end{align*}
$$

Observe that for $l=m+1,(13)$ is just (11) and (14) implies (12). Furthermore, (11) implies

$$
\left|K \backslash \bigcup_{j \leq l} I_{j}\right| \leq(1-\gamma)\left|K \backslash \bigcup_{j \leq l-1} I_{j}\right|
$$

and therefore

$$
\begin{equation*}
\left|K \backslash \bigcup_{j \leq l} I_{j}\right| \leq(1-\gamma)^{l} n \tag{15}
\end{equation*}
$$

It follows that the process stops with $K=\bigcup_{j \leq l} I_{j}$ for a certain $l=l^{*} \in \mathbb{N}$. This completes the construction.

Using the equivalence of moments (Theorem 4.7 of [7]), we get from (12) and (15)

$$
\begin{aligned}
& \left(\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p}\right)^{1 / p} \\
& \leq c \mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\| \leq c \sum_{l=1}^{l^{*}} \mathbb{E}\left\|\sum_{i \in I_{l}} \varepsilon_{i} x_{i}\right\| \\
& \leq c n^{1 / p}\left\|\left(x_{i}\right)\right\|_{\ell_{\infty}(X)} \max _{1 \leq k \leq n} k^{r / d+1-1 / p} e_{k}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right) \sum_{l=1}^{l^{*}}(1-\gamma)^{(l-1) / p} .
\end{aligned}
$$

This gives the upper bound of (4).

Let us mention that results analogous to Theorem 2 and Corollary 2 above also hold for Banach space valued indefinite integration (see [2] for the definition) and for the solution of initial value problems for Banach space valued ordinary
differential equations [5]. Indeed, an inspection of the respective proofs together with Lemma 1 of the present paper shows that Proposition 2 of [2] also holds with $\tau_{p}(X)$ replaced by $\sigma_{p, n}(X)$, and similarly Proposition 3.4 of [5]. Moreover, in both papers the lower bounds on $e_{n}^{\text {ran }}$ are obtained by reduction to (definite) integration and thus the righ-hand side inequality of (4) carries over directly.

References

[1] J. Bourgain, N. J. Kalton, L. Tzafriri, Geometry of finite dimensional subspaces and quotients of L_{p}, GAFA 1987/88, Lecture Notes in Mathematics 1376, Springer, 1989, 138-175.
[2] Th. Daun, S. Heinrich, Complexity of Banach space valued and parametric integration, to appear in the Proceedings of Monte Carlo and Quasi-Monte Carlo Methods 2012.
[3] S. Heinrich, Monte Carlo approximation of weakly singular integral operators, J. Complexity 22 (2006), 192-219.
[4] S. Heinrich, The randomized information complexity of elliptic PDE, J. Complexity 22 (2006), 220-249.
[5] S. Heinrich, Complexity of initial value problems in Banach spaces, J. Math. Phys. Anal. Geom. 9 (2013), 73-101.
[6] R. C. James, Nonreflexive spaces of type 2, Israel J. Math. 30 (1978), 1-13.
[7] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer, 1991.
[8] V. Mascioni, On weak cotype and weak type in Banach spaces. Note di Mat. (Lecce) 8 (1988), 67-110.
[9] B. Maurey, G. Pisier, Series de variables aléatoires vectorielles independantes et propriétés geométriques des espaces de Banach, Stud. Math. 58, 45-90 (1976).
[10] E. Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics 1349, Springer, 1988.
[11] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume 2, Standard Information for Functionals, European Math. Soc., Zürich, 2010.
[12] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, Information-Based Complexity, Academic Press, New York, 1988.
[13] L. Tzafriri, On the type and cotype of Banach spaces, Israel J. Math. 32 (1979), 32-38.

4 Appendix

In this appendix we recall some basic notions of information-based complexity the framework we used above. We refer to $[10,12]$ for more on this subject and to $[3,4]$ for the particular notation applied here. First we introduce the class of deterministic adaptive algorithms of varying cardinality $\mathcal{A}^{\text {det }}(C(Q, X), X)$. It consists of tuples $A=\left(\left(L_{i}\right)_{i=1}^{\infty},\left(\varrho_{i}\right)_{i=0}^{\infty},\left(\varphi_{i}\right)_{i=0}^{\infty}\right)$, with $L_{1} \in Q, \varrho_{0} \in\{0,1\}, \varphi_{0} \in X$ and

$$
L_{i}: X^{i-1} \rightarrow Q \quad(i=2,3, \ldots), \quad \varrho_{i}: X^{i} \rightarrow\{0,1\}, \varphi_{i}: X^{i} \rightarrow X \quad(i=1,2, \ldots)
$$

being arbitrary mappings. To each $f \in C(Q, X)$, we associate a sequence $\left(t_{i}\right)_{i=1}^{\infty}$ with $t_{i} \in Q$ as follows:

$$
t_{1}=L_{1}, \quad t_{i}=L_{i}\left(f\left(t_{1}\right), \ldots, f\left(t_{i-1}\right)\right) \quad(i \geq 2)
$$

Define card (A, f), the cardinality of A at input f, to be 0 if $\varrho_{0}=1$. If $\varrho_{0}=0$, let $\operatorname{card}(A, f)$ be the first integer $n \geq 1$ with $\varrho_{n}\left(f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right)=1$, if there is such an n, and $\operatorname{card}(A, f)=+\infty$ otherwise. For $f \in C(Q, X)$ with $\operatorname{card}(A, f)<\infty$ we define the output $A f$ of algorithm A at input f as

$$
A f= \begin{cases}\varphi_{0} & \text { if } \quad n=0 \\ \varphi_{n}\left(f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right) & \text { if } \quad n \geq 1\end{cases}
$$

Let $r \in \mathbb{N}_{0}$. Given $n \in \mathbb{N}_{0}$, we let $\mathcal{A}_{n}^{\text {det }}\left(B_{C^{r}(Q, X)}, X\right)$ be the set of those $A \in$ $\mathcal{A}^{\operatorname{det}}(C(Q, X), X)$ for which

$$
\max _{f \in B_{C^{r}(Q, X)}} \operatorname{card}(A, f) \leq n
$$

The error of $A \in \mathcal{A}_{n}^{\operatorname{det}}\left(B_{C^{r}(Q, X)}, X\right)$ as an approximation of S^{X} is defined as

$$
e\left(S^{X}, A, B_{C^{r}(Q, X)}\right)=\sup _{f \in B_{C^{r}(Q, X)}}\left\|S^{X} f-A f\right\| .
$$

The deterministic n-th minimal error of S^{X} is defined for $n \in \mathbb{N}_{0}$ as

$$
e_{n}^{\operatorname{det}}\left(S^{X}, B_{C^{r}(Q, X)}\right)=\inf _{A \in \mathcal{A}_{n}^{\operatorname{det}}\left(B_{C^{r}(Q, X)}\right)} e\left(S^{X}, A, B_{C^{r}(Q, X)}\right) .
$$

It follows that no deterministic algorithm that uses at most n function values can have a smaller error than $e_{n}^{\operatorname{det}}\left(S^{X}, B_{C^{r}(Q, X)}\right)$.

Next we introduce the class of randomized adaptive algorithms of varying cardinality $\mathcal{A}_{n}^{\mathrm{ran}}\left(B_{C^{r}(Q, X)}, X\right)$, consisting of tuples $A=\left((\Omega, \Sigma, \mathbb{P}),\left(A_{\omega}\right)_{\omega \in \Omega}\right)$, where $(\Omega, \Sigma, \mathbb{P})$ is a probability space, $A_{\omega} \in \mathcal{A}^{\operatorname{det}}(C(Q, X), X)$ for all $\omega \in \Omega$, and for each $f \in B_{C^{r}(Q, X)}$ the mapping $\omega \in \Omega \rightarrow \operatorname{card}\left(A_{\omega}, f\right)$ is Σ-measurable and satisfies $\mathbb{E} \operatorname{card}\left(A_{\omega}, f\right) \leq n$. Moreover, the mapping $\omega \in \Omega \rightarrow A_{\omega} f \in X$ is Σ -to-Borel measurable and essentially separably valued, i.e., there is a separable
subspace $X_{0} \subseteq X$ such that $A_{\omega} f \in X_{0}$ for \mathbb{P}-almost all $\omega \in \Omega$. The error of $A \in \mathcal{A}_{n}^{\mathrm{ran}}(C(Q, X), X)$ in approximating S^{X} on $B_{C^{r}(Q, X)}$ is defined as

$$
e\left(S^{X}, A, B_{C^{r}(Q, X)}\right)=\sup _{f \in B_{C^{r}(Q, X)}} \mathbb{E}\left\|S^{X} f-A_{\omega} f\right\|,
$$

and the randomized n-th minimal error of S^{X} as

$$
e_{n}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}\right)=\inf _{A \in \mathcal{A}_{n}^{\mathrm{ran}}\left(B_{C^{r}(Q, X)}\right)} e\left(S^{X}, A, B_{C^{r}(Q, X)}\right)
$$

Consequently, no randomized algorithm that uses (on the average) at most n function values has an error smaller than $e_{n}^{\mathrm{ran}}\left(S^{X}, B_{C^{r}(Q, X)}, X\right)$.

Define for $\varepsilon>0$ the information complexity as

$$
n_{\varepsilon}^{\mathrm{ran}}\left(S, B_{C^{r}(Q, X)}\right)=\min \left\{n \in \mathbb{N}_{0}: e_{n}^{\mathrm{ran}}\left(S, B_{C^{r}(Q, X)}\right) \leq \varepsilon\right\}
$$

if there is such an n, and $n_{\varepsilon}^{\mathrm{ran}}\left(S, B_{C^{r}}(Q, X)\right)=+\infty$, if there is no such n. Thus, if $n_{\varepsilon}^{\mathrm{ran}}\left(S, B_{C^{r}(Q, X)}\right)<\infty$, it follows that any algorithm with error $\leq \varepsilon$ needs at least $n_{\varepsilon}^{\mathrm{ran}}\left(S, B_{C^{r}(Q, X)}\right)$ function values, while $n_{\varepsilon}^{\mathrm{ran}}\left(S, B_{C^{r}(Q, X)}\right)=+\infty$ means that no algorithm at all has error $\leq \varepsilon$. The information complexity is essentially the inverse function of the n-th minimal error. So determining the latter means determining the information complexity of the problem.

Let us also mention the subclasses consisting of quadrature formulas. Let $n \geq 1$. A mapping $A: C(Q, X) \rightarrow X$ is called a deterministic quadrature formula with n nodes, if there are $t_{i} \in Q$ and $a_{i} \in \mathbb{K}(1 \leq i \leq n)$ such that

$$
A f=\sum_{i=1}^{n} a_{i} f\left(t_{i}\right) \quad(f \in C(Q, X))
$$

In terms of the definition of $\mathcal{A}^{\text {det }}(C(Q, X), X)$ this means that the respective functions L_{i} and ϱ_{i} are constant, $\varrho_{0}=\varrho_{1}=\cdots=\varrho_{n-1}=0, \varrho_{n}=1$, and φ_{n} has the form $\varphi_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} a_{i} x_{i}$. Clearly, $A \in \mathcal{A}_{n}^{\operatorname{det}}\left(B_{C^{r}(Q, X)}, X\right)$.

A tupel $A=\left((\Omega, \Sigma, \mathbb{P}),\left(A_{\omega}\right)_{\omega \in \Omega}\right)$ is called a randomized quadrature with n nodes if there exist random variables $t_{i}: \Omega \rightarrow Q$ and $a_{i}: \Omega \rightarrow \mathbb{K}(1 \leq i \leq n)$ with

$$
A_{\omega} f=\sum_{i=1}^{n} a_{i}(\omega) f\left(t_{i}(\omega)\right) \quad(f \in C(Q, X), \omega \in \Omega)
$$

For each such A we have $A \in \mathcal{A}_{n}^{\text {ran }}\left(B_{C^{r}(Q, X)}, X\right)$. Finally we note that the algorithms $A_{n, \omega}^{r, X}$ defined in (5) and (6) are quadratures. Indeed, for $A_{n, \omega}^{0, X}$ given by (5) this is obvious. For $r \geq 1$ we represent $P_{k}^{r, X} \in \mathscr{L}(C(Q, X))$ as

$$
P_{k}^{r, X} f=\sum_{j=1}^{M} f\left(u_{j}\right) \psi_{j}(t)
$$

with $M \leq c k^{d}, u_{j} \in Q, \psi_{j} \in C(Q)(1 \leq i \leq M)$, and obtain, setting $b_{j}=$ $\int_{Q} \psi_{j}(t) d t$,

$$
\begin{align*}
A_{n, \omega}^{r, X} f & =S^{X}\left(P_{k}^{r, X} f\right)+A_{n, \omega}^{0, X}\left(f-P_{k}^{r, X} f\right) \\
& =\sum_{j=1}^{M} b_{j} f\left(u_{j}\right)+\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\xi_{i}(\omega)\right)-\left(P_{k}^{r, X} f\right)\left(\xi_{i}(\omega)\right)\right) \\
& =\sum_{j=1}^{M} b_{j} f\left(u_{j}\right)+\frac{1}{n} \sum_{i=1}^{n} f\left(\xi_{i}(\omega)\right)-\sum_{j=1}^{M}\left(\frac{1}{n} \sum_{i=1}^{n} \psi_{j}\left(\xi_{i}(\omega)\right)\right) f\left(u_{j}\right) . \tag{16}
\end{align*}
$$

