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Abstract

We study the approximate solution of initial value problems for pa-
rameter dependent finite or infinite systems of scalar ordinary differential
equations (ODEs). Both the deterministic and the randomized setting is
considered, with input data from various smoothness classes. We study de-
terministic and Monte Carlo multilevel algorithms and derive convergence
rates. Moreover, we prove their optimality by showing matching (in some
limit cases up to logarithmic factors) lower bounds and settle this way
the complexity. Comparisons between the deterministic and randomized
setting are given, as well.

1 Introduction

This paper is a continuation of [3], where we considered the complexity of pa-
rameter dependent ODEs in Banach spaces. Here we study initial value problems
for parameter dependent finite or infinite scalar systems of ODEs. We consider
both the deterministic and the randomized setting, and various classes of input
functions.

We apply the algorithm and its analysis from [3] to scalar systems. The rates
obtained in [3] for general Banach spaces were sharp up to an arbitrary small gap
in the exponent. Using techniques from [4], in the present study we derive more
precise estimates — we determine the order, in some limit cases up to logarithmic
factors. Moreover, while in [3] only classes defined on the whole space were
considered, in this part more general local classes are studied. Finally, based on
finite dimensional estimates from [8] and [4], we prove lower bounds and obtain
the complexity.

The paper is organized as follows. Section 2 contains preliminaries. Con-
vergence rates are derived in Section 3. In Section 4 we prove lower bounds and
present the complexity analysis. We also discuss one special case of the considered



classes — functions with dominating mixed smoothness — and give comparisons
between the deterministic and the randomized setting. For a more extended
bibliography as well as further background material we refer to [3].

2 Preliminaries

The main goal of this paper is the study of parameter dependent finite systems of
scalar ODEs, that is, in the terminology of [3], we have Z = R? for some d € N.
However, we will still consider the more general case Z = H, where H is any
Hilbert space over the reals. This way we also include infinite systems of scalar
ODEs.

We start with the definition of the needed function classes. The functions
considered in [3] where assumed to possess certain smoothness properties on all
of H. We now introduce larger, local classes. Let dy € N, Q = [0,1]%. Let By
denote the closed and BY the open unit ball of H. Given rg,7 € Ny, 0 < p < 1,
A1, K, L > 0, and a real Hilbert space H, we define the following class 67" (Q ¥
la,b] x A\; BY, H; k, L) of continuous functions f : @ x [a, b] x \; BY;, — H having for
a = (ap, a1, az) € N} with ag < rg, ag < 7, and ag+ oy + ay < 1o + 7 continuous

partial (Fréchet) derivatives 831:2;% satisfying for s € Q, t € [a, ],z € \{BY,
ol f(s,t
f(s’ 7'Z) S /ﬂ;’ (1)
0500t 1022
for s € Q, t1,ts € [a,b], 21,20 € M BY
8|a|f(8 tl Zl) 3“"']’(8 t2 ZQ)
) Y _ Y Y < t —t 14 _ P 2
H 0s¥0 OtV 022 Os*tv1dze2 || — klt 2| + K21 — 2|?, (2)

and for a = (ap, 0, ap) with ag + ag < 1o, s € Q, t € [a,b], 21, 22 € M\ BY

H@'alf(s,t, z1) O f(s,t, )

0s%0 ) z2 0540 ) z%2

S LHZl — ZQH. (3)

Let 615,""(Q % [a,0] x H,H;k,L) denote the class defined in the same way as
above, just with A\; BY; replaced by H. We write 6]}% ([a, b] x \ By, H; s, L) for the
subclass of %Loi’;’p (Q % [a,b] x \y By, H; K, L) consisting of functions not depending
on s. In the sequel we also use the notation f,, where s € @, for the function
f(s,-,-) from [a,b] x \{BY to H.

Given f € 6;2"7(Q x [a,b] x \yBY%, H; k, L) and ug € \; BY, we consider the

Lip
parameter dependent initial value problem
d
Sulst) = flstulst) (s€@telab]), (4)
u(s,a) = ugls) (s € Q). (5)
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A function u : @ X [a,b] — H is called a solution if for each s € Q, u(s,t) is
continuously differentiable as a function of ¢, u(s,t) € A\;BY for all s € Q,t €
[a,b], and (4-5) are satisfied.

Next we recall the algorithm developed and studied for the scalar case in [1]
and for the Banach space valued case in [7, 3|. It produces an approximate solu-
tion to the non-parametric version of (4-5), that is, f € €737 ([a, )| x \\ By, H; k, L)
and uy € H do not depend on s. We have to modify the definition since, in con-
trast to [1, 7, 3], here the algorithm needs not always be defined.

Let m € Ng, n € N, and put h = (b —a)/n, t, = a+kh (k=0,1,...,n).
Furthermore, for 0 <k <n—1and 1 < j < mlet Py ; be the operator of Lagrange
interpolation of degree j on the equidistant grid ¢y ;; = ¢, +th/j (i = 0,...,7)
on [ty, txr1]. Let &, ..., &, be independent random variables on some probability
space (§2, X, P) such that & is uniformly distributed on [t;_1, ;] and

{(&(w),..., & (W) weQ} =[to,t1] X -+ X [tn1,tn].

We define (uy)}_; C H and H-valued polynomials py ;(t) for k = 0,...,n — 1,
7 =0,...,m by induction. Let 0 < k <n — 1, suppose uy, is already defined and

Then we put
pk70(t) = Up + f(tk, uk)(t — tk> (t € [tk, tk+1]). (7)
Furthermore, if m > 1, 0 < j < m, py; is already defined, and
Prj(teji1:) € MBY (1=0,...,5+1), (8)
then we set
G = (Fltegjrriprg(tejo)))i (9)
and
t
pssil®) =t [ (Pegnan) () (10
173
Finally, if
Pem(t) € M By (€ [ty tera]), (11)
we define
a1 = P (trr1) + 1 (f (Errts Pean (1)) — Den (Ert1)) - (12)

Now let B([a, b], H) denote the space of all H-valued, bounded on [a, b] functions,
equipped with the supremum norm. We define v € B([a, b, H) by
i <k<n-—
o(t) = { Prm (1) if ¢€[ty,tgr1) and 0<k<n-—1, (13)

Uy, if t=t,.



For w €  fixed, let

A CrP(la,b] x M By, Hyk, L) x H — B([a,b], H)

Lip
denote the resulting mapping, that is,

A;’fw(f, up) = . (14)

We say that A" (f,uo) is defined on [a,b] x A\;BY; (or, shortly: defined), if this
definition goes through till (13), that is, (6), (8), (11) are satisfied for all 0 < k <
n—1and,ifm >1, for 0 < j <m— 1. If for some w and some k, any of the
conditions (6), (8), (11) is violated, we leave A}’ (f,uo) undefined. Note that for
m = 0 we have

pro(t) = wp+ f(le,we)(t —tx) (L€ [thton], 0 <k <n—-1), (15)
U1 = up+hf(&ir,pr0(&ii1))  (0<k<n—1). (16)

Given also o > 0 and \g > 0 with Ay < \{, let .%# be the class of all

Lip

(f o) € (%O’T’p(Qx la,b] x M B, H: , L)

N Cgro,rl,pl (Q X [CL, b] X )\13?{7 H; K, L)) X JBCro(Q,H) (17)

Lip

such that the parameter dependent initial value problem (4-5) has a solution
u(s,t) with

sup [Ju(s, )] < Ao, (18)
SEQ, t€[a,b]

and moreover, if r = p =1r; = p; = 0, then for alln € N, w € Q, s € Q,
A (fs; uo(s)) is defined on [a,b] x A\; By and

0
i‘elg HAn,w(fS’UU(S))HB([a,b],H) =< Ao (19)

Note that if
a+/@(b—a) < )\0,

then (18) and, in the case r = p = r; = p; = 0, also (19) are automatically
satisfied, that is, we have

F = (‘50’”’(@ % [a,b] x M\ B, H: ., L)

Lip
Lip

NG (Q X [a,b] x AlB%aH; “7[1)) X 0 BcroQ.m)-

The solution operator
S F — B(Q X [a,b], H) (20)

is given for (f,ug) € F# by L (f,uo) = u.
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The following multilevel algorithm for the approximate solution of the para-
metric problem (4-5) was already introduced in [3]. Let lo,l; € No, lop < [y,
Nigs---,Ny € Ny w € £, and set

o) = plo(<Aglo,w<fs,w(s)))sdlo)

1
£ 3 AR (A ufon) o) (@D

I=lp+1

Here P, is H-valued composite with respect to the partition of () into cubes of
sidelength 27! tensor product Lagrange interpolation of degree max(rg, 1). Fur-
thermore, T is the equidistant grid on @ of meshsize (max(rg,1))"!127!. The
algorithms A;lo,w(fs,UO(S)) (s € Tyy) and A7L (fs,uo(s)) (s € Tyylo <1< 1y) are
given by (6-14). We say that o7, (f,ug) is defined, if A;lww(fs,ug(s)) (s € I'yy)
and A7) (fs,uo(s)) (s € Ty, lp <1< 1) are defined.

If card(<7,) denotes the number of function evaluations involved in .7, we
have

l1
card(<Z,) < cZnZQdol. (22)
I=lo

Furthermore, the number of arithmetic operations (including addition and multi-
plication by scalars of elements in H) of <7, is bounded from above by ccard(<,)
for some ¢ > 0.

3 Error estimates

To formulate the first result, we introduce the following functions. For n > 2 we
set (throughout the paper log means log,)

o) = 1 @G An ) VE=ntn=0
YT (logm)® T i =4 >0
and forn >3
(1 if (%>r1+p1+%)/\(r+p:r1+p1)
(logn)% if (T—z>r1+p1—|—%)/\(r+p>r1+p1)
o3
6a(n) (logn)®*> if G =ri+p+y (24)
2 = Y0 o ;
(logn)£ 1T f r1+p1<ﬁ<rl+p1+%
(loglogn)iJrl if 2—g:r1+p1>0
1 if (B=ritp=0)V (2<r+p)
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Theorem 3.1. Let rog,r,r1 € Ng, do € N, 0 < p,py < 1, withr +p > r1 + p1,
k,L,o >0, and \y > A\g > 0. There are constants c1_¢ > 0 and vy € N such
that the following hold. Let H be a Hilbert space and let % be defined by (17—
19). Then for all ly,l; € Ny with lo < Iy and for all (nl)flzlo C N with n; > vy
(lo <1< 1y), A,(f,u) is defined for all (f,ug) € F, w € Q,

sup || (f, wo) — A (f, w0l B(@x[ab), 1)
(fiuo)eF

l
< 012—r0l1 +Clnl_0T_p+Cl Z 2—mlnl—7"1—p1 (w e Q), (25)
I=lp+1

and for all I* with lo < 1" <4

1/2
sup (EH&”(f, ug) — A,(f, UO)H2B(Qx[a,b],H))
(fruo)€F

S 0227710[1 + Cg(l(] + 1)1/271
* 51
ey Z (l + 1)1/22—T0ln;T1*P1*1/2 + 9 Z 2—7“0[”[—7"1—91. (26)
I=lp+1 I=l*+1

—r—p—1/2
lo

Moreover, for each n € N with n > 2 there is a choice of ly,l; € Ny and (nl)glzlo C
N such that ly <1y, ny > vy (lo <1 <1y), and for all w € Q0 we have card(<Z,) <
csn and

sup ||L(f, u0) — Ao (f, uo) | B@xian, i) < can” 101 (n), (27)
(fuo)eF
where
o .
% ) o
v, = trtp—ri—p1 (r+p) if do = TP (28)
:T(O) if 2_8 <r +p

and 0y was defined in (23).

Finally, for each n € N with n > 2 there is a choice of ly,l; € Ny and
(m)iy, © N such that ly < Iy, mp > vy (I < 1< 1), card(e,) < csn (w € Q),
and

1/2 —v
sup (B (f,u0) — Ao fr1u0)P2auamm) < con20s(n),  (29)
(ffuo)Eﬁ
with
o
1 . r 1
e (ot ) o Bt

(30)

Vg =
To £ o 1
do Zf do §T1+,01+2

and 0y is given by (24).



We use the following lemma which was proved in [4], where the complexity of
parametric integration was studied in different but related smoothness classes.

Let ﬂ,ﬁo,ﬁl € R. Given lo,l*,ll S NO with lo < * < ll and (nl)ﬁlzlo C N, we
define

Il
M(l07l17(nl)§1:lo> = 2—ﬂ0d0l1 _’_nl—oﬂ_’_ Z Q—ﬁodolnl—ﬁl (31)
I=lp+1
l*
E(lo, ", b, (n))y,) = 27000 4 (I + 1) ” 4 ) 7 (14 1)1/l 7
I=lp+1

1
+ Y ool 2, (32)
I=l*+1

Lemma 3.2. Let 3,560,651 € R with By > 0 and > 1 > 0. Then there are
constants ci_3 > 0 such that for each n € N with n > 2 there is a choice of
lo,li € No, lo < 1y, and (m)jL,, C N such that

inﬂd‘” <aen (33)
I=ly
and
M(l()v ll? ( )é lo)
< e 1 if (Bo#B) V (Bo=0=0) (34)
(log )™+t 4f Gy = B >0,
where
v = { ﬁof%ﬁiﬁl Zf 50 > 61 (35)
Bo if  Bo < B

Moreover, if 51 > 1/2, then for each n € N with n > 2 there is a choice of
lo,I*,11 € Ny, lo < 1* <1y, and (nl)élzlo C N satisfying (33) and

E(lo, l*, lla (nl)élzlo)

1 if Go>p=p

Elog ng;/ig/z if Bo>p1 and (>3 .
log n )~ if Bo=0 36
(logn)oft1/2 4 6[1) — 1/12 < fo <

(loglogn)®*t  if By =06 —1/2.



Proof of Theorem 3.1. First we show (25) and (26). Let dp = (A1 — A\o)/4 > 0
and let ¢ be a C* function on [0, +00) with

w<7') =1 if OSTS ()\0+250)2
w(T) =0 if 7 Z ()\0 —|—3(50)2

For
fe (ffi’g’p(Q x [a,b] x \\BY, H; K, L) N CKE{};”’”(Q x [a,b] x \\BY, H; k, L) (37)
we put
: _ | f () i flz] <M
fst,2) = { 0 otherwise.
It follows that .
f(s,t,x) = f(s,t,2) (=] < Ao+ 2d0). (38)

Moreover, due to the (infinite) differentiability of the scalar product (z, z) = ||z||?
there are k1, L; > 0 (not depending on H) such that for all f satisfying (37)

J € G (Q x [a,b] x H, Hi ki, L) NG (Q x [a,8] x H, Hiky, L), (39)

Lip Lip

Let uy € 0Bcr(g,n) and assume that (f,ug) € #. Then, by assumption, the
solution u(s,t) of (4-5) exists and fulfills

sup lu(s, )] < Xo. (40)
SEQ,tE€[a,b]
Consequently,
d ~
Eu(s,t) = f(s,t,u(s,t)) = f(s,t,u(s,t)) (s€Q,tela,bl),
which implies ~
S (f,u0) = Z(f, uo). (41)
Let us denote h; = (b — a)/n; and
it =1
T(Z){Tl if l0<l§ll (42)
Now we show that for (f,up) € . and w € Q, algorithm o7, is defined and
fQ{w(.]E7 U’O) = %(fa U‘O)‘ (43)

First we consider the case 7+ p > 0. It follows from (39) and Theorem 3.2 of
[7] that there is a 14 > 0 such that for all i <[ <[lj, n; > v, w e, s€Q

1/ (fs wo(s)) = AL (fes 1o (9)) | B(1a i) < o,
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hence, by (40) and (41),

A (Fs,uo(8)) | Bas,m < Ao+ do. (44)

Now we fix [ with Ip <1 <1}, ny > 1y, w € Q, s € Q. Let ap(s) (0 <k < ny),
Pr;(s, +), and Gk ;(s) (0 <k <n;—1,0<j <r(l)) be the sequences arising in
the definition (6-12) of AZ;E{Z,(fS, ug(s)), and let ug(s), pr (s, -), and g4 ;(s) be the
corresponding sequences for ( fs, uo(s)), as far as they are defined on [a, b] x A\, B
(see (6), (8), and (11)). By (44), for t € [tg, tr+1],

1Dy (5, 1)]] < Ao+ do

and therefore also
[k (s)|| < Ao + do. (45)

By (7) and (9-10), for 0 < j <r(l)

1Dr.5(s, 1) = ur(s) || < co(r(D))rrhu,

where

c(0) =1, co(m) = max || Pl zc(tptnm) (M =>1)
1<j<m

and Py ; is the Lagrange interpolation operator introduced in Section 2. Note
that ¢y(m) is a constant depending only on m. Together with (45) this yields

)\0 + 50 + Co(?“(l))/ilhl

1B (s, )| <
< Ao+ 20 (t € [tr,trg), 0 < j < (D)), (46)

provided n; > 1, with a suitably chosen vy > v.
We prove that for 0 < k£ < n; the following holds:

ug(s) is defined and ug(s) = ax(s), (47)
and, if £ < mn; — 1, then for all j with 0 < j < r(I)
Dk.;(s, - ) is defined and py ;(s, ) = Pr (s, - )- (48)

First we show that (47) implies (48). Suppose (47) holds for some 0 < k < n —1.
We argue by induction over j. Let j = 0. By (38), (45), and (47),

f(s,th, up(s)) = f(s,th, Un(s)) = f(s tr, Ux(s)),
Pro(s, -) is defined, and

pk,o(s, t) = Uk<8) + ]i(S, tk, Uk<8))(t — f}k)
= up(s) + (s, e, k() (E — ) = Pro(s, t).



This is (48) for j = 0. Next suppose (48) holds for some j with 0 < 5 < r(l).
Then
Prj (8 tije1i) = Prj(sitigeri) (=0,...,5+1), (49)
and therefore, by (46),
P15 (8, thjrr,) | < Ao + 20 (50)

It follows that py ji1(s, - ) is defined. Using (38), (49), and (50), we get

F(8, thjt1 i (S, thjr1i)) = f(& thjt1,is Dk (85 th 1)),

therefore we also have gy ;(s) = gx;(s) and

Pros(st) = upls) + / (Pejsris () (7)dr

— () + / (Pojiriie s (9))(T)dr = o (5.1).

173

This completes the induction over j and the proof that (47) implies (48).

It remains to show (47). We use induction over k. The case k = 0 holds by
definition. Now we assume that (47) and therefore also (48) hold for some k with
0 <k <n-—1. From (46) and (48) we conclude

k@ (5, )T = 1Brry (s, ) < Ao+ 200 (E € [t trsa]),
which shows that wuy,1(s) is defined and

Pk,
upy1(s) = pk,r(l)(satk+1)"’hl<f(37€k+17pk,r(l)(5a€k+l))_ g’t(l)(syﬁkﬂ))

OPrr
gt 3 (37 §k+1)>

= DPro) (8, tey1) + Iy (f(S,5k+1,ﬁk,r(l)(8,fk+1)) -
= ﬁk+1(8).

This gives (47) for k+ 1, completes the induction over k and the proof of (47-48).
It follows that Ap%(fs,uo(s)) is defined and

AN (Fouo(s)) = AL, (fo uo(s))-

Consequently, 7, (f,uo) is defined and (43) holds for r + p > 0.

In the case r + p = 0 we have, by assumption, also r; = p; = 0 and therefore,
by (42), r(l) = 0 (lp <1 < l1). By definition of .7, A} (fs, uo(s)) is defined
for lp <1 < l; and s € Q, so <,(f,u) is defined. Fix [ with [y < [ < [y,
n €N, we Qs e@. Let t(s) and pro(s, -) (0 <k < ny—1) be the resulting
sequences from A9 ( fs,u0(s)), and ug(s), pro(s, - ) the respective sequences from
A% (fs,uo(s)). Then (19) implies

ny,w
la(o)] < do (0<k<m) (51)
||pk70(8at)|| < )‘0 (t S [tkatlﬁ-l]) 0 S k S n; — 1) (52>

10



For 0 < k < ny the following holds:

uk(s) = ug(s) (53)
pro(s, -) = Prols,-) (E<mn —1). (54)

This follows readily by induction as above. Indeed, the case k = 0 of (53) is clear,
and if (53) holds for some k, we get, using (15-16), (38), and (51-52),

pk70(8, t) = ’U,k(S) + f~(87 tk, uk(s))(t — tk)
= g(s) + f(s; e, k() (E — ) = Pro(s, t)

and

upr1(s) = ug(s) + b f(s, rrs Pro(s, Er))
= Gk(s) + Pf (5, G Pro(s, Gesn)) = Giara(s).
This shows R
A o(fosuo(s)) = Ay, L (fs uo(s))
and consequently (43) for r 4+ p = 0. Now the proof of (25) and (26) is finished
by combining (39), (41), (43), and Theorem 4.1 of [3].

Next we derive (27) and (29) from (25), (26), and Lemma 3.2. To show (27)
we define

r
B=r+p =2 h=r+p, (55)
0
which together with (28) and (35) gives v = vy. Furthermore, (25) and (31) yield
sup |7 (f. o) — o (f, u0) || Beaxlann < ¢ M (lo, Iy, (m)iy,) (56)

(fiuo)eF

for all ly,l; € Ny with [y < [; and (nl)ﬁlzlo C Nwithn; > 1 (Ip <1 <1). Now
(27) follows from (22), (55-56), and (34) of Lemma 3.2. Finally, to check (29),
we set

1 T 1
B=r+p+s, ==, b=ritp+s, (57)
2 do 2
which by (30) and (35) implies v = vy. We infer from (26) and (32) that

sup (]E||Y(f, uo) — A,(f, U0)||2B(Qx[a,b],H))
(fiuo)eF
for all Iy, I*, 1y € No with [y < 1* <1y and (n;)iY, C N with ng > 1 (Ip <1< 1y).
Now (29) in the first five cases of (24) is a consequence of (22), (57-58), and (36)
of Lemma 3.2. In the last case of (24) relation (29) follows directly from (23) and
(27).

1/2

< cE(lo, %, b, (m)L,,)  (58)

]

Remark 3.3. The case r + p < r; + p; is left out in Theorem 3.1 because it
represents nothing new — it is (up to constants) the same as the case r = ry,
p = p1. This is easily seen directly, we also refer to the argument in Remark 4.2
of [3], which carries over to our situation.
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4 Complexity

For the framework of information-based complexity theory we refer to [10, 9],
details on the notions used here can be found in [5, 6]. In the terminology of
[5, 6], the parametric initial value problem is given by the tuple

(7, Z,B(Q x [a,b], H), H, A).

The first three components describe the already defined in (20) solution operator
S F — B(Q x [a,b],H). Information to be used about (f,uy) € F takes
values in H (the fourth component) and the set A of information functionals is
of the form

A = {04.: s€Q,t€[ab,z€ \BY}U {6, : s €Q}, (59)

where 5, .(f, uo) = f(s,t,2) and d5(f, uo) = uo(s). Thus, information is stan-
dard, that means, consists of values of f and ug. The n-th minimal error of .%
on .% in the deterministic, respectively randomized setting, that is, the minimal
possible error among all deterministic, respectively randomized algorithms that
use at most n information functionals, is denoted by ed*t(#,.F), respectively
e (s F).

Given two sequences of nonnegative reals (a,)nen and (b, )nen, we write a,, <
b, if there is a constant ¢ > 0 and an ng € N such that for all n > ng, a, < cb,.
The notation a,, < b, means a,, < b, and b,, < a,,.

Next we state the main result of this paper, which settles the complexity of
the parametric initial value problem. It gives the sharp order of the deterministic
and randomized minimal errors, except for some limit cases, where logarithmic
gaps remain. Together with Theorem 3.1, it also shows the optimality of the
multilevel algorithm (21).

Theorem 4.1. Let rog,7,11 € Ng, do € N, 0 < p,py < 1, withr +p > r1 + p1,
k,L,o >0, and \y > A\g > 0. Let H be a Hilbert space, and let .F be defined by
(17-19). Then in the deterministic setting,

ewNS F) = dif (RFrAp) V(R =r1+p=0)
and

N X el (S, F) 2 (logn) T i =1y 4y > 0,

where vy is given by (28). In the randomized setting,

S F) =) i (Aot DA (R A )
\% (%27’1‘1‘/)1:0)

12



and, in the limit cases,

n2(logn)i < (S, F) 22 (logn)w i =4 pr+
n~v2 e (S .F) 2 n 2 (loglog n)‘%Jrl if F=ri+p>0,

where vy is defined in (30) and 0y in (24).

To prove the lower bounds we will reduce the parametric initial value problem
to definite parametric integration. We consider the space C™"*(Q X [a,b], H) of
continuous functions f : @ x[a,b] — H having for o = (o, 1) € Ng with oy < 7,
aq < r continuous partial derivatives g‘%f% with the following property: there
is a constant ¢ > 0 such that for ag < rg, ay <r

o

(s € @,tela,b)) (60)

0s@oJtar

and

<t —ta]? (s€Q,th,ts € la,b]). (61
05 Hten Os%0 Ot — C| 1 2| <S Q 1,42 [CL D ( )
The norm || f{|crore(@xap), i) is defined to be the smallest constant ¢ > 0 satisfying
(60-61). If H = R, we write C™"?(Q X [a, b]). Considering functions on @ X [a, b]
as functions on @ X [a,b] x A\ BY% not depending on z € A\;BY% and comparing
(1-3) with (60-61), we see that for all L >0

Hamf(s»tl) (s, o)

%TO TP(Q X [a, b] X )\13?{, H; K, L) M C(Q X [a, b], H) = KBCTO,r,p(QX[a’bLH). (62)

Lip

The operator of definite parametric integration . : C(Q X [a,b]) — C(Q) is
given for f € C(Q % [a,b]) by

(Fof)(s /fst (s € Q). (63)
In connection with ., we consider the following class of information functionals

Ao ={0s1:5s€Q,t€labl}, 0::(f) = f(s,1). (64)

Now let ¢y be a C* function on R% with support in () and

o (%%) 1 (65)

Furthermore, let ¢; be a C'*° function on R with support in [a, b] and f o1(t)dt #

0. Let mg,m; e Ny let Q; (i=1,...,m ) be the subdivision of @) into mg cubes
of disjoint interior of sidelength mg*. Let s; be the point in ); with minimal
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coordinates. For j =0,...,m; —1put t; = a+j(b—a)/m; and define for s € Q,
t€lab],i=1,.. go

Go,i(s) = go(mo(s — i),  ¢1,;(t) = d1(a+my(t —t;))
and

¢ij(sat) = ¢0,i(5)¢17j(t)-

Denote

mo mi—1

Vingams = ZZ%%J. 0y e[-1,1],i=1,...,m j=0,....m —1

i=1 j=0

We use another technical estimate from [4], which, in turn, is based on lower
estimates obtained in [8]. For v,70,71 € R we define

Wity = min (my 7 m M my ™) W (66)

We recall Lemma 4.5 of [4], with d = 1, which corresponds to our situation.

Lemma 4.2. Let v,v9,71 € R with v9 > 0 and v > v1 > 0. Then there are
constants c1,co > 0 such that for each n € N with n > 2 there is a choice of
mg, my € Ny fulfilling

mdom, > 4n (67)

and

det(y YLy > e,

mo,m1
where vz is defined by
. othomds /o >m
3 = .
7 if o/do <.

Furthermore, for each n € N with n > 2 there is a choice of mg, my € Ny such
that (67) holds and

(68)

en (Lo, Ul )

1 if  (yo/do > +1/2) A (v =m)
(logn)*/2 if (o/do>mn+1/2) A (v >m)
(logn)0/do=r if ~ < ~y9/dy <1+ 1/2
1

if  vo/do <,

> con

with

Y(v+1/2)
vy, = { Yo+(v—"1)do i 0/do > +1/2 (69)

& if /do <m+1/2.
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Proof of Theorem 4.1. The upper bounds follow from Theorem 3.1. To show the
lower bounds, let zp € H with ||2]| = 1 and define

Vit KBo@xfap) — %O’O’O(Q x [a,b] x \\BY, H; K, L) x o Beg) (70)

Lip

for f € K'BC(QX[a,b]) by

if = (f,0), (71)

where .
f(s,t,2) = f(s,t)20 (s €Q,t€[ab], z€ \BY). (72)
By (59) and (64), information on V; f transforms into information on f as follows
Ost:(ViS) = f(svtv z) = f(s,t)20 = 65.4(f)z0 (73)
5s(Vif) = 0. (74)

Furthermore, let V5 : B(Q X [a,b], H) — B(Q) be given for g € B(Q X [a,b], H)
by
(Vag)(s) = (g(s,b), %) (s € Q). (75)

Clearly,
[Va| = 1. (76)

Let
= S 2?7107“"2?710
be the center of @; and let T,,, : B(Q) — C(Q) be given for v € B(Q) by

do
Mo

Tinov = Z v(n:)Po.i-

i=1
There is a constant ¢; > 0 such that for all mg € N
[Tl < 1 (77)
and, because of (65), we have

TV = ¥ (v € span { ¢y, : i=1,...,md ). (78)

Moreover, the solution u = .(f,0) of

%u(s,t) = f(s,t,u(s,t)) = f(s,t)z0 (s € Q,t € [a,b])

u(s,a) = 0 (se€@)

u(s,t):/ f(s,7)dr 2. (79)
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It follows from (63), (71), (75), (78), and (79) that

of =Ty Vo (Vi f) (f €spanty, ). (80)
By (79), | fllc@xjap) < (b— a)~ )\, implies that
sup[Ju(s, )] < Ao 81)

SEQ,t€a,b]

and, using (15) and (16), for alln € N, w € Q, s € Q, A%w(fs,()) is defined on
la,b] x A\ BY and

su A s, H < Xo. 82
SGSH f >B([a,b],H) 0 (82)

It is readily checked that there is a constant ¢o > 0 such that for all mg, m; €
N, ¢ € ¥

mo,mi1
||¢||CO’T‘p(QX[a,bD S C2m71‘+p
H@D“C’Toan;m (Qx[a,b]) S C2m0 m71“1+p1'

Setting c3 = ¢, " min (k, (b — a) ™' \g), it follows that for all mg,m; € N

\IJTJ’_p 705 T1+p1 g IIllIl (/{/7 (b - a)_l)\o) (BCO’T’p(QX[a,b]) ﬂ Bcro,rl,pl (QX[a,b}))

mo,m1

and therefore, taking into account (62), (81), and (82)
Vi (csWriororto) € . (83)
It follows from (73-74), (80), and (83) that the problem

(%7 031117‘4-0 w0101 C(Q)a Rv AO)

mo,m1

reduces to

(7,7, B(Q x [a,0], H), H, )
(see Section 3 of [6]). Consequently, by (76) and (77), for all n,mg,m; € N

e;et(y7 y) 2 C;leset<%’ CS\IJTer 70, r1+p1) _ CIICS e;et(y()’ \Ijr+p 70, r1+p1) (84)

n mo,mi mo,m1

where set € {det,ran}.

Now we let v =7+ p, 7o = ro, 71 = 11 + p1 and get from (28), (30), (68), and
(69) that v = v; and vy = vy. This together with (84) and Lemma 4.2 proves
the lower bounds of Theorem 4.1.

UJ

As an example let us just mention the special case of functions with dom-
inating mixed smoothness. For further discussion of special classes we refer to
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Section 6 of [3]. Based on the results above, this discussion is easily extended to
the present context. If r = ry, p = pp, then .Z is the set of all

(fiuo) € G (Q % [a,b] x By, H; ki, L) X 0 Bero(g.m)
which fulfill (18) and (19). We neglect logarithmic factors and write a,, <jog bn
iff there are constants c¢y,co > 0, ng € N, and 61, 05 € R such that for all n > ny,
cra,(log(n + 1)) <b, < cpa,(log(n + 1))%. From Theorem 4.1 we obtain

Corollary 4.3. Let ro,7 € No, 0< p <1, r=1ry, p=p1. Then

e (S F) Xiog N do

1 70

e (S F) Xiog nimin(wﬁi’%)

It follows that for ro/dg > r+ p+% the best Monte Carlo methods are superior
to the best deterministic ones by an order of n=1/2. If ro/do < T+ p+ %, the
gain decreases, until for ro/dy < r + p the optimal rates of deterministic and
randomized methods become the same.
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