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Abstract

We study the approximate solution of initial value problems for pa-
rameter dependent finite or infinite systems of scalar ordinary differential
equations (ODEs). Both the deterministic and the randomized setting is
considered, with input data from various smoothness classes. We study de-
terministic and Monte Carlo multilevel algorithms and derive convergence
rates. Moreover, we prove their optimality by showing matching (in some
limit cases up to logarithmic factors) lower bounds and settle this way
the complexity. Comparisons between the deterministic and randomized
setting are given, as well.

1 Introduction

This paper is a continuation of [3], where we considered the complexity of pa-
rameter dependent ODEs in Banach spaces. Here we study initial value problems
for parameter dependent finite or infinite scalar systems of ODEs. We consider
both the deterministic and the randomized setting, and various classes of input
functions.

We apply the algorithm and its analysis from [3] to scalar systems. The rates
obtained in [3] for general Banach spaces were sharp up to an arbitrary small gap
in the exponent. Using techniques from [4], in the present study we derive more
precise estimates – we determine the order, in some limit cases up to logarithmic
factors. Moreover, while in [3] only classes defined on the whole space were
considered, in this part more general local classes are studied. Finally, based on
finite dimensional estimates from [8] and [4], we prove lower bounds and obtain
the complexity.

The paper is organized as follows. Section 2 contains preliminaries. Con-
vergence rates are derived in Section 3. In Section 4 we prove lower bounds and
present the complexity analysis. We also discuss one special case of the considered
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classes – functions with dominating mixed smoothness – and give comparisons
between the deterministic and the randomized setting. For a more extended
bibliography as well as further background material we refer to [3].

2 Preliminaries

The main goal of this paper is the study of parameter dependent finite systems of
scalar ODEs, that is, in the terminology of [3], we have Z = Rd for some d ∈ N.
However, we will still consider the more general case Z = H, where H is any
Hilbert space over the reals. This way we also include infinite systems of scalar
ODEs.

We start with the definition of the needed function classes. The functions
considered in [3] where assumed to possess certain smoothness properties on all
of H. We now introduce larger, local classes. Let d0 ∈ N, Q = [0, 1]d0 . Let BH

denote the closed and B0
H the open unit ball of H. Given r0, r ∈ N0, 0 ≤ ρ ≤ 1,

λ1, κ, L > 0, and a real Hilbert space H, we define the following class C r0,r,ρ
Lip (Q×

[a, b]×λ1B
0
H , H;κ, L) of continuous functions f : Q×[a, b]×λ1B

0
H → H having for

α = (α0, α1, α2) ∈ N3
0 with α0 ≤ r0, α1 ≤ r, and α0 +α1 +α2 ≤ r0 + r continuous

partial (Fréchet) derivatives ∂|α|f(s,t,z)
∂sα0∂tα1∂zα2

satisfying for s ∈ Q, t ∈ [a, b], z ∈ λ1B
0
H∥∥∥∥ ∂|α|f(s, t, z)

∂sα0∂tα1∂zα2

∥∥∥∥ ≤ κ, (1)

for s ∈ Q, t1, t2 ∈ [a, b], z1, z2 ∈ λ1B
0
H∥∥∥∥∂|α|f(s, t1, z1)

∂sα0∂tα1∂zα2
− ∂|α|f(s, t2, z2)

∂sα0∂tα1∂zα2

∥∥∥∥ ≤ κ|t1 − t2|ρ + κ‖z1 − z2‖ρ, (2)

and for α = (α0, 0, α2) with α0 + α2 ≤ r0, s ∈ Q, t ∈ [a, b], z1, z2 ∈ λ1B
0
H∥∥∥∥∂|α|f(s, t, z1)

∂sα0∂zα2
− ∂|α|f(s, t, z2)

∂sα0∂zα2

∥∥∥∥ ≤ L‖z1 − z2‖. (3)

Let C r0,r,ρ
Lip (Q × [a, b] × H,H;κ, L) denote the class defined in the same way as

above, just with λ1B
0
H replaced by H. We write C r,ρ

Lip([a, b]×λ1B
0
H , H;κ, L) for the

subclass of C 0,r,ρ
Lip (Q× [a, b]×λ1B

0
H , H;κ, L) consisting of functions not depending

on s. In the sequel we also use the notation fs, where s ∈ Q, for the function
f(s, ·, ·) from [a, b]× λ1B

0
H to H.

Given f ∈ C r0,r,ρ
Lip (Q× [a, b]× λ1B

0
H , H;κ, L) and u0 ∈ λ1B

0
H , we consider the

parameter dependent initial value problem

d

dt
u(s, t) = f(s, t, u(s, t)) (s ∈ Q, t ∈ [a, b]), (4)

u(s, a) = u0(s) (s ∈ Q). (5)
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A function u : Q × [a, b] → H is called a solution if for each s ∈ Q, u(s, t) is
continuously differentiable as a function of t, u(s, t) ∈ λ1B

0
H for all s ∈ Q, t ∈

[a, b], and (4–5) are satisfied.
Next we recall the algorithm developed and studied for the scalar case in [1]

and for the Banach space valued case in [7, 3]. It produces an approximate solu-
tion to the non-parametric version of (4–5), that is, f ∈ C r,ρ

Lip([a, b]×λ1B
0
H , H;κ, L)

and u0 ∈ H do not depend on s. We have to modify the definition since, in con-
trast to [1, 7, 3], here the algorithm needs not always be defined.

Let m ∈ N0, n ∈ N, and put h = (b − a)/n, tk = a + kh (k = 0, 1, . . . , n).
Furthermore, for 0 ≤ k ≤ n−1 and 1 ≤ j ≤ m let Pk,j be the operator of Lagrange
interpolation of degree j on the equidistant grid tk,j,i = tk + ih/j (i = 0, . . . , j)
on [tk, tk+1]. Let ξ1, . . . , ξn be independent random variables on some probability
space (Ω,Σ,P) such that ξk is uniformly distributed on [tk−1, tk] and

{(ξ1(ω), . . . , ξn(ω)) : ω ∈ Ω} = [t0, t1]× · · · × [tn−1, tn].

We define (uk)
n
k=1 ⊂ H and H-valued polynomials pk,j(t) for k = 0, . . . , n − 1,

j = 0, . . . ,m by induction. Let 0 ≤ k ≤ n− 1, suppose uk is already defined and

uk ∈ λ1B
0
H . (6)

Then we put

pk,0(t) = uk + f(tk, uk)(t− tk) (t ∈ [tk, tk+1]). (7)

Furthermore, if m ≥ 1, 0 ≤ j < m, pk,j is already defined, and

pk,j(tk,j+1,i) ∈ λ1B
0
H (i = 0, . . . , j + 1), (8)

then we set

qk,j = (f(tk,j+1,i, pk,j(tk,j+1,i)))
j+1
i=0 (9)

and

pk,j+1(t) = uk +

∫ t

tk

(Pk,j+1qk,j) (τ)dτ. (10)

Finally, if
pk,m(t) ∈ λ1B

0
H (t ∈ [tk, tk+1]), (11)

we define

uk+1 = pk,m(tk+1) + h
(
f(ξk+1, pk,m(ξk+1))− p′k,m(ξk+1)

)
. (12)

Now let B([a, b], H) denote the space of all H-valued, bounded on [a, b] functions,
equipped with the supremum norm. We define v ∈ B([a, b], H) by

v(t) =

{
pk,m(t) if t ∈ [tk, tk+1) and 0 ≤ k ≤ n− 1,
un if t = tn.

(13)
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For ω ∈ Ω fixed, let

Amn,ω : Cr,ρ
Lip([a, b]× λ1B

0
H , H;κ, L)×H → B([a, b], H)

denote the resulting mapping, that is,

Amn,ω(f, u0) = v. (14)

We say that Amn,ω(f, u0) is defined on [a, b] × λ1B
0
H (or, shortly: defined), if this

definition goes through till (13), that is, (6), (8), (11) are satisfied for all 0 ≤ k ≤
n − 1 and, if m ≥ 1, for 0 ≤ j ≤ m − 1. If for some ω and some k, any of the
conditions (6), (8), (11) is violated, we leave Amn,ω(f, u0) undefined. Note that for
m = 0 we have

pk,0(t) = uk + f(tk, uk)(t− tk) (t ∈ [tk, tk+1], 0 ≤ k ≤ n− 1), (15)

uk+1 = uk + hf(ξk+1, pk,0(ξk+1)) (0 ≤ k ≤ n− 1). (16)

Given also σ > 0 and λ0 > 0 with λ0 < λ1, let F be the class of all

(f, u0) ∈
(
C 0,r,ρ

Lip (Q× [a, b]× λ1B
0
H , H;κ, L)

∩ C r0,r1,ρ1
Lip (Q× [a, b]× λ1B

0
H , H;κ, L)

)
× σBCr0 (Q,H) (17)

such that the parameter dependent initial value problem (4–5) has a solution
u(s, t) with

sup
s∈Q, t∈[a,b]

‖u(s, t)‖ ≤ λ0, (18)

and moreover, if r = ρ = r1 = ρ1 = 0, then for all n ∈ N, ω ∈ Ω, s ∈ Q,
A0
n,ω(fs, u0(s)) is defined on [a, b]× λ1B

0
H and

sup
s∈Q

∥∥A0
n,ω(fs, u0(s))

∥∥
B([a,b],H)

≤ λ0. (19)

Note that if
σ + κ(b− a) ≤ λ0,

then (18) and, in the case r = ρ = r1 = ρ1 = 0, also (19) are automatically
satisfied, that is, we have

F =
(
C 0,r,ρ

Lip (Q× [a, b]× λ1B
0
H , H;κ, L)

∩ C r0,r1,ρ1
Lip (Q× [a, b]× λ1B

0
H , H;κ, L)

)
× σBCr0 (Q,H).

The solution operator
S : F → B(Q× [a, b], H) (20)

is given for (f, u0) ∈ F by S (f, u0) = u.
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The following multilevel algorithm for the approximate solution of the para-
metric problem (4–5) was already introduced in [3]. Let l0, l1 ∈ N0, l0 ≤ l1,
nl0 , . . . , nl1 ∈ N, ω ∈ Ω, and set

Aω(f, u0) = Pl0

((
Arnl0 ,ω

(fs, u0(s))
)
s∈Γl0

)
+

l1∑
l=l0+1

(Pl − Pl−1)
((
Ar1nl,ω(fs, u0(s))

)
s∈Γl

)
. (21)

Here Pl is H-valued composite with respect to the partition of Q into cubes of
sidelength 2−l tensor product Lagrange interpolation of degree max(r0, 1). Fur-
thermore, Γl is the equidistant grid on Q of meshsize (max(r0, 1))−12−l. The
algorithms Arnl0 ,ω

(fs, u0(s)) (s ∈ Γl0) and Ar1nl,ω(fs, u0(s)) (s ∈ Γl, l0 < l ≤ l1) are

given by (6–14). We say that Aω(f, u0) is defined, if Arnl0 ,ω
(fs, u0(s)) (s ∈ Γl0)

and Ar1nl,ω(fs, u0(s)) (s ∈ Γl, l0 < l ≤ l1) are defined.
If card(Aω) denotes the number of function evaluations involved in Aω, we

have

card(Aω) ≤ c

l1∑
l=l0

nl2
d0l. (22)

Furthermore, the number of arithmetic operations (including addition and multi-
plication by scalars of elements in H) of Aω is bounded from above by c card(Aω)
for some c > 0.

3 Error estimates

To formulate the first result, we introduce the following functions. For n ≥ 2 we
set (throughout the paper log means log2)

θ1(n) =

{
1 if

(
r0
d0
6= r1 + ρ1

)
∨
(
r0
d0

= r1 + ρ1 = 0
)

(log n)
r0
d0

+1
if r0

d0
= r1 + ρ1 > 0

(23)

and for n ≥ 3

θ2(n) =



1 if
(
r0
d0
> r1 + ρ1 + 1

2

)
∧
(
r + ρ = r1 + ρ1

)
(log n)

1
2 if

(
r0
d0
> r1 + ρ1 + 1

2

)
∧
(
r + ρ > r1 + ρ1

)
(log n)

r0
d0

+ 3
2 if r0

d0
= r1 + ρ1 + 1

2

(log n)
r0
d0
−r1−ρ1 if r1 + ρ1 <

r0
d0
< r1 + ρ1 + 1

2

(log log n)
r0
d0

+1
if r0

d0
= r1 + ρ1 > 0

1 if
(
r0
d0

= r1 + ρ1 = 0
)
∨
(
r0
d0
< r1 + ρ1

)
.

(24)
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Theorem 3.1. Let r0, r, r1 ∈ N0, d0 ∈ N, 0 ≤ ρ, ρ1 ≤ 1, with r + ρ ≥ r1 + ρ1,
κ, L, σ > 0, and λ1 > λ0 > 0. There are constants c1−6 > 0 and ν0 ∈ N such
that the following hold. Let H be a Hilbert space and let F be defined by (17–
19). Then for all l0, l1 ∈ N0 with l0 ≤ l1 and for all (nl)

l1
l=l0
⊂ N with nl ≥ ν0

(l0 ≤ l ≤ l1), Aω(f, u0) is defined for all (f, u0) ∈ F , ω ∈ Ω,

sup
(f,u0)∈F

‖S (f, u0)−Aω(f, u0)‖B(Q×[a,b],H)

≤ c12−r0l1 + c1n
−r−ρ
l0

+ c1

l1∑
l=l0+1

2−r0ln−r1−ρ1l (ω ∈ Ω), (25)

and for all l∗ with l0 ≤ l∗ ≤ l1

sup
(f,u0)∈F

(
E‖S (f, u0)−Aω(f, u0)‖2

B(Q×[a,b],H)

)1/2

≤ c22−r0l1 + c2(l0 + 1)1/2n
−r−ρ−1/2
l0

+c2

l∗∑
l=l0+1

(l + 1)1/22−r0ln
−r1−ρ1−1/2
l + c2

l1∑
l=l∗+1

2−r0ln−r1−ρ1l . (26)

Moreover, for each n ∈ N with n ≥ 2 there is a choice of l0, l1 ∈ N0 and (nl)
l1
l=l0
⊂

N such that l0 ≤ l1, nl ≥ ν0 (l0 ≤ l ≤ l1), and for all ω ∈ Ω we have card(Aω) ≤
c3n and

sup
(f,u0)∈F

‖S (f, u0)−Aω(f, u0)‖B(Q×[a,b],H) ≤ c4n
−υ1θ1(n), (27)

where

υ1 =


r0
d0

r0
d0

+r+ρ−r1−ρ1
(r + ρ) if r0

d0
> r1 + ρ1

r0
d0

if r0
d0
≤ r1 + ρ1

(28)

and θ1 was defined in (23).
Finally, for each n ∈ N with n > 2 there is a choice of l0, l1 ∈ N0 and

(nl)
l1
l=l0
⊂ N such that l0 ≤ l1, nl ≥ ν0 (l0 ≤ l ≤ l1), card(Aω) ≤ c5n (ω ∈ Ω),

and
sup

(f,u0)∈F

(
E‖S (f, u0)−Aω(f, u0)‖2

B(Q×[a,b],H)

)1/2 ≤ c6n
−υ2θ2(n), (29)

with

υ2 =


r0
d0

r0
d0

+r+ρ−r1−ρ1

(
r + ρ+ 1

2

)
if r0

d0
> r1 + ρ1 + 1

2

r0
d0

if r0
d0
≤ r1 + ρ1 + 1

2

(30)

and θ2 is given by (24).
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We use the following lemma which was proved in [4], where the complexity of
parametric integration was studied in different but related smoothness classes.

Let β, β0, β1 ∈ R. Given l0, l
∗, l1 ∈ N0 with l0 ≤ l∗ ≤ l1 and (nl)

l1
l=l0
⊂ N, we

define

M
(
l0, l1, (nl)

l1
l=l0

)
= 2−β0d0l1 + n−βl0 +

l1∑
l=l0+1

2−β0d0ln−β1

l (31)

E
(
l0, l

∗, l1, (nl)
l1
l=l0

)
= 2−β0d0l1 + (l0 + 1)1/2n−βl0 +

l∗∑
l=l0+1

(l + 1)1/22−β0d0ln−β1

l

+

l1∑
l=l∗+1

2−β0d0ln
−β1+1/2
l . (32)

Lemma 3.2. Let β, β0, β1 ∈ R with β0 ≥ 0 and β ≥ β1 ≥ 0. Then there are
constants c1−3 > 0 such that for each n ∈ N with n ≥ 2 there is a choice of
l0, l1 ∈ N0, l0 ≤ l1, and (nl)

l1
l=l0
⊂ N such that

l1∑
l=l0

nl2
d0l ≤ c1n (33)

and

M
(
l0, l1, (nl)

l1
l=l0

)
≤ c2n

−υ

{
1 if (β0 6= β1) ∨ (β0 = β1 = 0)

(log n)β0+1 if β0 = β1 > 0,
(34)

where

υ =

{
β0β

β0+β−β1
if β0 > β1

β0 if β0 ≤ β1.
(35)

Moreover, if β1 ≥ 1/2, then for each n ∈ N with n > 2 there is a choice of
l0, l

∗, l1 ∈ N0, l0 ≤ l∗ ≤ l1, and (nl)
l1
l=l0
⊂ N satisfying (33) and

E
(
l0, l

∗, l1, (nl)
l1
l=l0

)

≤ c3n
−υ


1 if β0 > β1 = β
(log n)1/2 if β0 > β1 and β > β1

(log n)β0+3/2 if β0 = β1

(log n)β0−β1+1/2 if β1 − 1/2 < β0 < β1

(log log n)β0+1 if β0 = β1 − 1/2.

(36)
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Proof of Theorem 3.1. First we show (25) and (26). Let δ0 = (λ1 − λ0)/4 > 0
and let ψ be a C∞ function on [0,+∞) with

ψ(τ) = 1 if 0 ≤ τ ≤ (λ0 + 2δ0)2

ψ(τ) = 0 if τ ≥ (λ0 + 3δ0)2.

For

f ∈ C 0,r,ρ
Lip (Q× [a, b]× λ1B

0
H , H;κ, L)∩C r0,r1,ρ1

Lip (Q× [a, b]× λ1B
0
H , H;κ, L) (37)

we put

f̃(s, t, x) =

{
f(s, t, x)ψ(‖x‖2) if ‖x‖ < λ1

0 otherwise.

It follows that
f̃(s, t, x) = f(s, t, x) (‖x‖ ≤ λ0 + 2δ0). (38)

Moreover, due to the (infinite) differentiability of the scalar product (x, x) = ‖x‖2

there are κ1, L1 > 0 (not depending on H) such that for all f satisfying (37)

f̃ ∈ C 0,r,ρ
Lip (Q× [a, b]×H,H;κ1, L1) ∩ C r0,r1,ρ1

Lip (Q× [a, b]×H,H;κ1, L1). (39)

Let u0 ∈ σBCr(Q,H) and assume that (f, u0) ∈ F . Then, by assumption, the
solution u(s, t) of (4–5) exists and fulfills

sup
s∈Q,t∈[a,b]

‖u(s, t)‖ ≤ λ0. (40)

Consequently,

d

dt
u(s, t) = f(s, t, u(s, t)) = f̃(s, t, u(s, t)) (s ∈ Q, t ∈ [a, b]),

which implies
S (f̃ , u0) = S (f, u0). (41)

Let us denote hl = (b− a)/nl and

r(l) =

{
r if l = l0
r1 if l0 < l ≤ l1.

(42)

Now we show that for (f, u0) ∈ F and ω ∈ Ω, algorithm Aω is defined and

Aω(f̃ , u0) = Aω(f, u0). (43)

First we consider the case r+ ρ > 0. It follows from (39) and Theorem 3.2 of
[7] that there is a ν1 > 0 such that for all l0 ≤ l ≤ l1, nl ≥ ν1, ω ∈ Ω, s ∈ Q

‖S (f̃s, u0(s))− Ar(l)nl,ω
(f̃s, u0(s))‖B([a,b],H) ≤ δ0,
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hence, by (40) and (41),

‖Ar(l)nl,ω
(f̃s, u0(s))‖B([a,b],H) ≤ λ0 + δ0. (44)

Now we fix l with l0 ≤ l ≤ l1, nl ≥ ν1, ω ∈ Ω, s ∈ Q. Let ũk(s) (0 ≤ k ≤ nl),
p̃k,j(s, · ), and q̃k,j(s) (0 ≤ k ≤ nl − 1, 0 ≤ j ≤ r(l)) be the sequences arising in

the definition (6–12) of A
r(l)
nl,ω(f̃s, u0(s)), and let uk(s), pk,j(s, · ), and qk,j(s) be the

corresponding sequences for (fs, u0(s)), as far as they are defined on [a, b]×λ1B
0
H

(see (6), (8), and (11)). By (44), for t ∈ [tk, tk+1],

‖p̃k,r(l)(s, t)‖ ≤ λ0 + δ0

and therefore also
‖ũk(s)‖ ≤ λ0 + δ0. (45)

By (7) and (9–10), for 0 ≤ j ≤ r(l)

‖p̃k,j(s, t)− ũk(s)‖ ≤ c0(r(l))κ1hl,

where
c0(0) = 1, c0(m) = max

1≤j≤m
‖Pk,j‖L (C([tk,tk+1],H)) (m ≥ 1)

and Pk,j is the Lagrange interpolation operator introduced in Section 2. Note
that c0(m) is a constant depending only on m. Together with (45) this yields

‖p̃k,j(s, t)‖ ≤ λ0 + δ0 + c0(r(l))κ1hl

≤ λ0 + 2δ0 (t ∈ [tk, tk+1], 0 ≤ j ≤ r(l)), (46)

provided nl ≥ ν0, with a suitably chosen ν0 ≥ ν1.
We prove that for 0 ≤ k ≤ nl the following holds:

uk(s) is defined and uk(s) = ũk(s), (47)

and, if k ≤ nl − 1, then for all j with 0 ≤ j ≤ r(l)

pk,j(s, · ) is defined and pk,j(s, · ) = p̃k,j(s, · ). (48)

First we show that (47) implies (48). Suppose (47) holds for some 0 ≤ k ≤ n− 1.
We argue by induction over j. Let j = 0. By (38), (45), and (47),

f(s, tk, uk(s)) = f(s, tk, ũk(s)) = f̃(s, tk, ũk(s)),

pk,0(s, · ) is defined, and

pk,0(s, t) = uk(s) + f(s, tk, uk(s))(t− tk)
= uk(s) + f̃(s, tk, ũk(s))(t− tk) = p̃k,0(s, t).
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This is (48) for j = 0. Next suppose (48) holds for some j with 0 ≤ j < r(l).
Then

pk,j(s, tk,j+1,i) = p̃k,j(s, tk,j+1,i) (i = 0, . . . , j + 1), (49)

and therefore, by (46),

‖pk,j(s, tk,j+1,i)‖ ≤ λ0 + 2δ0. (50)

It follows that pk,j+1(s, · ) is defined. Using (38), (49), and (50), we get

f(s, tk,j+1,i, pk,j(s, tk,j+1,i)) = f̃(s, tk,j+1,i, p̃k,j(s, tk,j+1,i)),

therefore we also have qk,j(s) = q̃k,j(s) and

pk,j+1(s, t) = uk(s) +

∫ t

tk

(Pk,j+1qk,j(s))(τ)dτ

= ũk(s) +

∫ t

tk

(Pk,j+1q̃k,j(s))(τ)dτ = p̃k,j+1(s, t).

This completes the induction over j and the proof that (47) implies (48).
It remains to show (47). We use induction over k. The case k = 0 holds by

definition. Now we assume that (47) and therefore also (48) hold for some k with
0 ≤ k ≤ n− 1. From (46) and (48) we conclude

‖pk,r(l)(s, t)‖ = ‖p̃k,r(l)(s, t)‖ ≤ λ0 + 2δ0 (t ∈ [tk, tk+1]),

which shows that uk+1(s) is defined and

uk+1(s) = pk,r(l)(s, tk+1) + hl

(
f(s, ξk+1, pk,r(l)(s, ξk+1))−

∂pk,r(l)
∂t

(s, ξk+1)
)

= p̃k,r(l)(s, tk+1) + hl

(
f̃(s, ξk+1, p̃k,r(l)(s, ξk+1))−

∂p̃k,r(l)
∂t

(s, ξk+1)
)

= ũk+1(s).

This gives (47) for k+1, completes the induction over k and the proof of (47–48).

It follows that A
r(l)
nl,ω(fs, u0(s)) is defined and

Ar(l)nl,ω
(f̃s, u0(s)) = Ar(l)nl,ω

(fs, u0(s)).

Consequently, Aω(f, u0) is defined and (43) holds for r + ρ > 0.
In the case r+ ρ = 0 we have, by assumption, also r1 = ρ1 = 0 and therefore,

by (42), r(l) = 0 (l0 ≤ l ≤ l1). By definition of F , A0
nl,ω

(fs, u0(s)) is defined
for l0 ≤ l ≤ l1 and s ∈ Q, so Aω(f, u0) is defined. Fix l with l0 ≤ l ≤ l1,
nl ∈ N, ω ∈ Ω, s ∈ Q. Let ũk(s) and p̃k,0(s, · ) (0 ≤ k ≤ nl − 1) be the resulting
sequences from A0

nl,ω
(f̃s, u0(s)), and uk(s), pk,0(s, · ) the respective sequences from

A0
nl,ω

(fs, u0(s)). Then (19) implies

‖uk(s)‖ ≤ λ0 (0 ≤ k ≤ nl) (51)

‖pk,0(s, t)‖ ≤ λ0 (t ∈ [tk, tk+1], 0 ≤ k ≤ nl − 1). (52)
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For 0 ≤ k ≤ nl the following holds:

uk(s) = ũk(s) (53)

pk,0(s, · ) = p̃k,0(s, · ) (k ≤ nl − 1). (54)

This follows readily by induction as above. Indeed, the case k = 0 of (53) is clear,
and if (53) holds for some k, we get, using (15–16), (38), and (51–52),

pk,0(s, t) = uk(s) + f(s, tk, uk(s))(t− tk)
= ũk(s) + f̃(s, tk, ũk(s))(t− tk) = p̃k,0(s, t)

and

uk+1(s) = uk(s) + hlf(s, ξk+1, pk,0(s, ξk+1))

= ũk(s) + hlf̃(s, ξk+1, p̃k,0(s, ξk+1)) = ũk+1(s).

This shows
A0
nl,ω

(f̃s, u0(s)) = A0
nl,ω

(fs, u0(s))

and consequently (43) for r + ρ = 0. Now the proof of (25) and (26) is finished
by combining (39), (41), (43), and Theorem 4.1 of [3].

Next we derive (27) and (29) from (25), (26), and Lemma 3.2. To show (27)
we define

β = r + ρ, β0 =
r0

d0

, β1 = r1 + ρ1, (55)

which together with (28) and (35) gives υ = υ1. Furthermore, (25) and (31) yield

sup
(f,u0)∈F

‖S (f, u0)−Aω(f, u0)‖B(Q×[a,b],H) ≤ cM
(
l0, l1, (nl)

l1
l=l0

)
(56)

for all l0, l1 ∈ N0 with l0 ≤ l1 and (nl)
l1
l=l0
⊂ N with nl ≥ ν0 (l0 ≤ l ≤ l1). Now

(27) follows from (22), (55–56), and (34) of Lemma 3.2. Finally, to check (29),
we set

β = r + ρ+
1

2
, β0 =

r0

d0

, β1 = r1 + ρ1 +
1

2
, (57)

which by (30) and (35) implies υ = υ2. We infer from (26) and (32) that

sup
(f,u0)∈F

(
E‖S (f, u0)−Aω(f, u0)‖2

B(Q×[a,b],H)

)1/2 ≤ cE
(
l0, l

∗, l1, (nl)
l1
l=l0

)
(58)

for all l0, l
∗, l1 ∈ N0 with l0 ≤ l∗ ≤ l1 and (nl)

l1
l=l0
⊂ N with nl ≥ ν0 (l0 ≤ l ≤ l1).

Now (29) in the first five cases of (24) is a consequence of (22), (57–58), and (36)
of Lemma 3.2. In the last case of (24) relation (29) follows directly from (23) and
(27).

Remark 3.3. The case r + ρ < r1 + ρ1 is left out in Theorem 3.1 because it
represents nothing new – it is (up to constants) the same as the case r = r1,
ρ = ρ1. This is easily seen directly, we also refer to the argument in Remark 4.2
of [3], which carries over to our situation.
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4 Complexity

For the framework of information-based complexity theory we refer to [10, 9],
details on the notions used here can be found in [5, 6]. In the terminology of
[5, 6], the parametric initial value problem is given by the tuple

(S ,F , B(Q× [a, b], H), H,Λ).

The first three components describe the already defined in (20) solution operator
S : F → B(Q × [a, b], H). Information to be used about (f, u0) ∈ F takes
values in H (the fourth component) and the set Λ of information functionals is
of the form

Λ = {δs,t,z : s ∈ Q, t ∈ [a, b], z ∈ λ1B
0
H} ∪ {δs : s ∈ Q}, (59)

where δs,t,z(f, u0) = f(s, t, z) and δs(f, u0) = u0(s). Thus, information is stan-
dard, that means, consists of values of f and u0. The n-th minimal error of S
on F in the deterministic, respectively randomized setting, that is, the minimal
possible error among all deterministic, respectively randomized algorithms that
use at most n information functionals, is denoted by edet

n (S ,F ), respectively
eran
n (S ,F ).

Given two sequences of nonnegative reals (an)n∈N and (bn)n∈N, we write an �
bn if there is a constant c > 0 and an n0 ∈ N such that for all n ≥ n0, an ≤ cbn.
The notation an � bn means an � bn and bn � an.

Next we state the main result of this paper, which settles the complexity of
the parametric initial value problem. It gives the sharp order of the deterministic
and randomized minimal errors, except for some limit cases, where logarithmic
gaps remain. Together with Theorem 3.1, it also shows the optimality of the
multilevel algorithm (21).

Theorem 4.1. Let r0, r, r1 ∈ N0, d0 ∈ N, 0 ≤ ρ, ρ1 ≤ 1, with r + ρ ≥ r1 + ρ1,
κ, L, σ > 0, and λ1 > λ0 > 0. Let H be a Hilbert space, and let F be defined by
(17–19). Then in the deterministic setting,

edet
n (S ,F ) � n−υ1 if

(
r0
d0
6= r1 + ρ1

)
∨
(
r0
d0

= r1 + ρ1 = 0
)

and

n−υ1 � edet
n (S ,F ) � n−υ1(log n)

r0
d0

+1
if r0

d0
= r1 + ρ1 > 0,

where υ1 is given by (28). In the randomized setting,

eran
n (S ,F ) � n−υ2θ2(n) if

((
r0
d0
6= r1 + ρ1 + 1

2

)
∧
(
r0
d0
6= r1 + ρ1

))
∨
(
r0
d0

= r1 + ρ1 = 0
)

12



and, in the limit cases,

n−υ2(log n)
1
2 � eran

n (S ,F ) � n−υ2(log n)
r0
d0

+ 3
2 if r0

d0
= r1 + ρ1 + 1

2

n−υ2 � eran
n (S ,F ) � n−υ2(log log n)

r0
d0

+1
if r0

d0
= r1 + ρ1 > 0,

where υ2 is defined in (30) and θ2 in (24).

To prove the lower bounds we will reduce the parametric initial value problem
to definite parametric integration. We consider the space Cr0,r,ρ(Q× [a, b], H) of
continuous functions f : Q×[a, b]→ H having for α = (α0, α1) ∈ N2

0 with α0 ≤ r0,

α1 ≤ r continuous partial derivatives ∂|α|f(s,t)
∂sα0∂tα1

with the following property: there
is a constant c ≥ 0 such that for α0 ≤ r0, α1 ≤ r∥∥∥∥∂|α|f(s, t)

∂sα0∂tα1

∥∥∥∥ ≤ c (s ∈ Q, t ∈ [a, b]) (60)

and ∥∥∥∥∂|α|f(s, t1)

∂sα0∂tα1
− ∂|α|f(s, t2)

∂sα0∂tα1

∥∥∥∥ ≤ c|t1 − t2|ρ (s ∈ Q, t1, t2 ∈ [a, b]). (61)

The norm ‖f‖Cr0,r,ρ(Q×[a,b],H) is defined to be the smallest constant c ≥ 0 satisfying
(60–61). If H = R, we write Cr0,r,ρ(Q× [a, b]). Considering functions on Q× [a, b]
as functions on Q × [a, b] × λ1B

0
H not depending on z ∈ λ1B

0
H and comparing

(1–3) with (60–61), we see that for all L > 0

C r0,r,ρ
Lip (Q× [a, b]× λ1B

0
H , H;κ, L) ∩ C(Q× [a, b], H) = κBCr0,r,ρ(Q×[a,b],H). (62)

The operator of definite parametric integration S0 : C(Q × [a, b]) → C(Q) is
given for f ∈ C(Q× [a, b]) by

(S0f)(s) =

∫ b

a

f(s, t)dt (s ∈ Q). (63)

In connection with S0 we consider the following class of information functionals

Λ0 = {δs,t : s ∈ Q, t ∈ [a, b]}, δs,t(f) = f(s, t). (64)

Now let φ0 be a C∞ function on Rd0 with support in Q and

φ0

(
1

2
, . . . ,

1

2

)
= 1. (65)

Furthermore, let φ1 be a C∞ function on R with support in [a, b] and
∫ b
a
φ1(t)dt 6=

0. Let m0,m1 ∈ N, let Qi (i = 1, . . . ,md0
0 ) be the subdivision of Q into md0

0 cubes
of disjoint interior of sidelength m−1

0 . Let si be the point in Qi with minimal
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coordinates. For j = 0, . . . ,m1− 1 put tj = a+ j(b−a)/m1 and define for s ∈ Q,
t ∈ [a, b], i = 1, . . . ,md0

0

φ0,i(s) = φ0(m0(s− si)), φ1,j(t) = φ1(a+m1(t− tj))

and
ψij(s, t) = φ0,i(s)φ1,j(t).

Denote

Ψ0
m0,m1

=


m
d0
0∑

i=1

m1−1∑
j=0

δijψij : δij ∈ [−1, 1], i = 1, . . . ,md0
0 , j = 0, . . . ,m1 − 1

 .

We use another technical estimate from [4], which, in turn, is based on lower
estimates obtained in [8]. For γ, γ0, γ1 ∈ R we define

Ψγ,γ0,γ1
m0,m1

= min
(
m−γ1 ,m−γ00 m−γ11

)
Ψ0
m0,m1

. (66)

We recall Lemma 4.5 of [4], with d = 1, which corresponds to our situation.

Lemma 4.2. Let γ, γ0, γ1 ∈ R with γ0 ≥ 0 and γ ≥ γ1 ≥ 0. Then there are
constants c1, c2 > 0 such that for each n ∈ N with n ≥ 2 there is a choice of
m0,m1 ∈ N0 fulfilling

md0
0 m1 ≥ 4n (67)

and

edet
n (S0,Ψ

γ,γ0,γ1
m0,m1

) ≥ c1n
−υ3 ,

where υ3 is defined by

υ3 =

{
γ0γ

γ0+(γ−γ1)d0
if γ0/d0 > γ1

γ0
d0

if γ0/d0 ≤ γ1.
(68)

Furthermore, for each n ∈ N with n > 2 there is a choice of m0,m1 ∈ N0 such
that (67) holds and

eran
n (S0,Ψ

γ,γ0,γ1
m0,m1

)

≥ c2n
−υ4


1 if (γ0/d0 > γ1 + 1/2) ∧ (γ = γ1)
(log n)1/2 if (γ0/d0 > γ1 + 1/2) ∧ (γ > γ1)
(log n)γ0/d0−γ1 if γ1 < γ0/d0 ≤ γ1 + 1/2
1 if γ0/d0 ≤ γ1,

with

υ4 =

{
γ0(γ+1/2)
γ0+(γ−γ1)d0

if γ0/d0 > γ1 + 1/2
γ0
d0

if γ0/d0 ≤ γ1 + 1/2.
(69)
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Proof of Theorem 4.1. The upper bounds follow from Theorem 3.1. To show the
lower bounds, let z0 ∈ H with ‖z0‖ = 1 and define

V1 : κBC(Q×[a,b]) → C 0,0,0
Lip (Q× [a, b]× λ1B

0
H , H;κ, L)× σBC(Q) (70)

for f ∈ κBC(Q×[a,b]) by

V1f = (f̃ , 0), (71)

where
f̃(s, t, z) = f(s, t)z0 (s ∈ Q, t ∈ [a, b], z ∈ λ1B

0
H). (72)

By (59) and (64), information on V1f transforms into information on f as follows

δs,t,z(V1f) = f̃(s, t, z) = f(s, t)z0 = δs,t(f)z0 (73)

δs(V1f) = 0. (74)

Furthermore, let V2 : B(Q × [a, b], H) → B(Q) be given for g ∈ B(Q × [a, b], H)
by

(V2g)(s) = (g(s, b), z0) (s ∈ Q). (75)

Clearly,
‖V2‖ = 1. (76)

Let

ηi = si +

(
1

2m0

, . . . ,
1

2m0

)
be the center of Qi and let Tm0 : B(Q)→ C(Q) be given for v ∈ B(Q) by

Tm0v =

m
d0
0∑

i=1

v(ηi)φ0,i.

There is a constant c1 > 0 such that for all m0 ∈ N

‖Tm0‖ ≤ c1 (77)

and, because of (65), we have

Tm0v = v
(
v ∈ span

{
φ0,i : i = 1, . . . ,md0

0

} )
. (78)

Moreover, the solution u = S (f̃ , 0) of

d

dt
u(s, t) = f̃(s, t, u(s, t)) = f(s, t)z0 (s ∈ Q, t ∈ [a, b])

u(s, a) = 0 (s ∈ Q)

is

u(s, t) =

∫ t

a

f(s, τ)dτ z0. (79)
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It follows from (63), (71), (75), (78), and (79) that

S0f = Tm0V2S (V1f)
(
f ∈ span Ψ0

m0,m1

)
. (80)

By (79), ‖f‖C(Q×[a,b]) ≤ (b− a)−1λ0, implies that

sup
s∈Q,t∈[a,b]

‖u(s, t)‖ ≤ λ0 (81)

and, using (15) and (16), for all n ∈ N, ω ∈ Ω, s ∈ Q, A0
n,ω(f̃s, 0) is defined on

[a, b]× λ1B
0
H and

sup
s∈Q

∥∥∥A0
n,ω(f̃s, 0)

∥∥∥
B([a,b],H)

≤ λ0. (82)

It is readily checked that there is a constant c2 > 0 such that for all m0,m1 ∈
N, ψ ∈ Ψ0

m0,m1

‖ψ‖C0,r,ρ(Q×[a,b]) ≤ c2m
r+ρ
1

‖ψ‖Cr0,r1,ρ1 (Q×[a,b]) ≤ c2m
r0
0 m

r1+ρ1
1 .

Setting c3 = c−1
2 min (κ, (b− a)−1λ0), it follows that for all m0,m1 ∈ N

c3Ψr+ρ,r0,r1+ρ1
m0,m1

⊆ min
(
κ, (b− a)−1λ0

) (
BC0,r,ρ(Q×[a,b]) ∩BCr0,r1,ρ1 (Q×[a,b])

)
and therefore, taking into account (62), (81), and (82)

V1

(
c3Ψr+ρ,r0,r1+ρ1

m0,m1

)
⊆ F . (83)

It follows from (73–74), (80), and (83) that the problem

(S0, c3Ψr+ρ,r0,r1+ρ1
m0,m1

, C(Q),R,Λ0)

reduces to
(S ,F , B(Q× [a, b], H), H,Λ)

(see Section 3 of [6]). Consequently, by (76) and (77), for all n,m0,m1 ∈ N

eset
n (S ,F ) ≥ c−1

1 eset
n (S0, c3Ψr+ρ,r0,r1+ρ1

m0,m1
) = c−1

1 c3 e
set
n (S0,Ψ

r+ρ,r0,r1+ρ1
m0,m1

), (84)

where set ∈ {det, ran}.
Now we let γ = r+ ρ, γ0 = r0, γ1 = r1 + ρ1 and get from (28), (30), (68), and

(69) that υ3 = υ1 and υ4 = υ2. This together with (84) and Lemma 4.2 proves
the lower bounds of Theorem 4.1.

As an example let us just mention the special case of functions with dom-
inating mixed smoothness. For further discussion of special classes we refer to
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Section 6 of [3]. Based on the results above, this discussion is easily extended to
the present context. If r = r1, ρ = ρ1, then F is the set of all

(f, u0) ∈ C r0,r,ρ
Lip (Q× [a, b]× λ1B

0
H , H;κ, L)× σBCr0 (Q,H)

which fulfill (18) and (19). We neglect logarithmic factors and write an �log bn
iff there are constants c1, c2 > 0, n0 ∈ N, and θ1, θ2 ∈ R such that for all n ≥ n0,
c1an(log(n+ 1))θ1 ≤ bn ≤ c2an(log(n+ 1))θ2 . From Theorem 4.1 we obtain

Corollary 4.3. Let r0, r ∈ N0, 0 ≤ ρ ≤ 1, r = r1, ρ = ρ1. Then

edet
n (S ,F ) �log n

−min
“
r+ρ,

r0
d0

”

eran
n (S ,F ) �log n

−min
“
r+ρ+ 1

2
,
r0
d0

”
.

It follows that for r0/d0 ≥ r+ρ+ 1
2

the best Monte Carlo methods are superior
to the best deterministic ones by an order of n−1/2. If r0/d0 < r + ρ + 1

2
, the

gain decreases, until for r0/d0 ≤ r + ρ the optimal rates of deterministic and
randomized methods become the same.
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