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Abstract

We present an iterative Monte Carlo procedure to solve initial value
problems for systems of ordinary differential equations depending on a
parameter. It is based on a multilevel Monte Carlo algorithm for paramet-
ric indefinite integration. As an application, we also obtain a respective
method for solving almost linear first order partial differential equations.
We also consider deterministic algorithms.

We study the convergence and, in the framework of information-based
complexity, the minimal errors and show that the developed algorithms
are of optimal order (in some limit cases up to logarithmic factors). This
way we extend recent complexity results on parametric ordinary differential
equations. Moreover, we obtain the complexity of almost linear first-order
partial differential equations, which has not been analyzed before.

1 Introduction

Monte Carlo (one-level) methods for integrals depending on a parameter were first
considered in [8]. Multilevel Monte Carlo methods for parametric integration were
developed in [14], where the problem was studied for the first time in the frame of
information-based complexity theory (IBC). These investigations were continued
in [3], where the complexity of parametric indefinite integration was studied for
the first time.

Recently there arose considerable interest in the numerical solution of various
parametric problems, also in connection with random partial differential equa-
tions, see [1, 7, 18, 19] and references therein. Deterministic methods for solving
parametric initial value problems for systems of ordinary differential equations
(ODEs) were first considered in [9)].

The study of ODEs in IBC was begun in [15] for the deterministic case and
in [16, 17] for the stochastic case. The complexity in the randomized setting was



further studied in [13, 2, 12]. The complexity of parametric initial value problems
for systems of ODEs was investigated in [4] and [5], where multilevel Monte Carlo
algorithms for this problem were developed and shown to be of optimal order.

Here we study function classes satisfying a weaker Lipschitz condition than
those considered in [4]. This is needed for the applications to the complexity
analysis for almost linear partial differential equations (PDEs). Moreover, we
present a new approach to solve initial value problems for ODEs depending on
a parameter. We develop an iterative Monte Carlo procedure, based on a mul-
tilevel algorithm for parametric indefinite integration. This leads to an iterative
multilevel Monte Carlo method for solving almost linear first order PDEs. We
also consider deterministic algorithms.

We prove convergence rates, determine the minimal errors in the framework of
IBC, and show that the developed algorithms are of optimal order (in some limit
cases up to logarithmic factors). This way we extend recent complexity results
of [4] on parametric ordinary differential equations. Moreover, the complexity of
almost linear first-order partial differential equation is determined, a topic, which
has not been considered before.

The paper is organized as follows. In Section 2 we provide the needed notation.
In Sections 3 and 4 we recall the algorithms from [3] on Banach space valued and
parametric indefinite integration, respectively, and improve some convergence
results. Section 5 contains the main results. Based on the results of Section 4
we study the iterative solution of initial value problems for parametric ordinary
differential equations. Finally, in Section 6 we apply the results of Section 5 to
the analysis of the complexity of almost linear partial differential equations.

2 Preliminaries

Let N ={1,2,...} and Ny = {0,1,2,...}. For a Banach space X the norm is
denoted by || ||x, the closed unit ball by By, the identity mapping on X by Iy,
and the dual space by X*. The Euclidean norm on R¢ (d € N) is denoted by
|| ||re. Given another Banach space Y, we let £ (X,Y") be the space of bounded
linear mappings T : X — Y endowed with the canonical norm. If X =Y, we
write .Z(X) instead of .Z (X, X). We assume all considered Banach spaces to be
defined over the field of reals R.

Concerning constants, we make the convention that the same symbol ¢, ¢y,
o, ... may denote different constants, even in a sequence of relations. Further-
more, we use the following order notation: For nonnegative reals (a,)nen and
(bn)nen we write a,, < b, if there are constants ¢ > 0 and ny € N such that for
all n > ng, a, < cb,. Finally, a, =< b, stands for a, < b, and b, < a,. If not
specified, the function log always means log,.

Given a set D C R? which is the closure of an open set, and a Banach space
X, we define C"(D, X) to be the space of all functions f : D — X which are
r-times continuously differentiable in the interiour of D and which together with



their derivatives up to order r are bounded and possess continuous extensions to
all of D. This space is equipped with the norm

91 f(s)
[fllerpx) = sup || ===
P agzrnsenll 957l
with a = (ay,...,aq4) € N& and a = || + -+ + |ag|. For r = 0 we also write

C(D, X) and if X =R, we also write C"(D) and C(D).

The type 2 constant of a Banach space X is denoted by 75(X). We refer
to [20] as well as to the introductions in [3, 4] for this notion and related facts.
The injective tensor product of Banach spaces X and Y is denoted by X ®, Y.
Definitions and background on tensor products can be found in [6, 21], see also
the introduction to [3]. Let us mention, in particular, the canonical isometric

identification
C(D,X) = X @, C(D) 1

for compact D C R? We also note that for Banach spaces X, Xs,Y;,Ys and
operators 17 € Z(X1,Y1), Ty € Z(Xs,Ys), the algebraic tensor product T3 @715 :
X1 ® X = Y] ® Y, extends to a bounded linear operator 77 @ Ty € Z(X; ®
X5, Y] ®, Ys) with

1Ty ® Tall 2(xy0rx0v100v2) = IT1 L2 vy | T2 || 2 (x0,v2) - (2)

Let Q = [0,1]4. For r,m € N we let P"4% € £(C(Q, X)) be composite with
respect to the partition of Q = [0, 1]¢ into m? subcubes of sidelength m~! tensor
product Lagrange interpolation of degree r. Thus, P"%* interpolates on I'?

where Fﬁ = {% 0<1 < k}d for k € N. If X = R, we write P,;’d. Note that in
the sense of (1) we have P4%X = Iy @ P"?. Furthermore, there are constants
c1,co > 0 such that for all Banach spaces X and all m

sup ||f — Pt
€Ber(Q,x)

< com™". (3)

Hprgd’XH,sf(C(Q,X)) < o, fHC(Q,X)

This is well-known in the scalar case, for the easy extension to Banach spaces see

3].

3 Banach Space Valued Indefinite Integration
Let X be a Banach space and let the indefinite integration operator be given by
t
S C(0.11.X) > C.1.X). (S50 = [ far (¢ 0.1).
0

First we recall the the Monte Carlo method from Section 4 of [13], here for
integration domain [0,1]. Given n € N, we define t; = > (0 < i < n). Let
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& : Q — [ti, tir1] be independent uniformly distributed random variables on a
probability space (2,3, P). For f € C(Q,X) and w € Q we define g, : I} — R
by

= % Y f(Ew) (0<i<n).

0<j<i
Let r € Ny. If r =0, we set

AOOXf _PllX

and if r > 1,
AO,T,Xf _ SX([)T,LXf) AO’O’X<f . PT’LXf). (4)

We write Sy and A)7 if X = R. Observe that in the sense of identification (1)
we have
Sy =Ix® Sy, AVX =Ix® A, (5)

moreover, A27X € Z(C([0,1], X)) and, since g,,(0) = 0,
(A1) (0) =0 (r e Ny). (©)
We need the following result which complements Proposition 2 in [3].

Proposition 1. Let r € Nyg. Then there are constants c1,co > 0 such that for all
Banach spaces X, n € N, w € Q, and f € C([0,1], X) we have

1S5 f = A%X flleqoanxy < ellfleqax (7)
ENSf = AN e qonx0)"? < cama(X)n 2| fllogox)- (8)

Proof. Relation (7) directly follows from the definitions. By Proposition 2 in
[3], there is a constant ¢ > 0 such that for all Banach spaces X, n € N, and
f € C([0,1], X) we have

E 1557 = AL o) < enOn ™I fleqoux- ()
This is the case 7 = 0 of (8). Now assume r > 1. Then (3), (4), and (9) give
(B NS5 S = A5 i on:)
= (EISS(F ~ PP - AO’O’X(f = P Plieon )
< en(X)n VP f = B fllogo,x) < era(X)n™ 2| fllogox)-
[

We shall further study the multilevel procedure developed in [3]. Let (7;)°, C
Z(X). For convenience we introduce the following parameter set

M = {(lo, 11, (nip)iy,) = losl € No, o < 1y, ()i, € N (10)
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For yi € .4 we define an approximation A)7, to S as follows:

A, = Ty @AY L+ > (T =Ti) ® A (11)

nr,w?
I=lp+1

where the tensor product is understood in the sense of (1). We assume that the

random variables A%" and (A2° ) '
0,

i are independent. We have

lo+1
A%, € 2(C([0, 1], X)).
Denote

Xi = dx(Ti(X)) (I €No) (12)
Xy = ox((T = T0)(X)) (eN), (13)

where clx denotes the closure in X. In particular, X; and X;_;; are endowed
with the norm induced by X. The following result complements Proposition 3 in

13].

Proposition 2. There is a constant ¢ > 0 such that for all Banach spaces X,
and operators (17)72, as above, for all p € A

r 1/2
Sup (E 155 f — Ag’,wf”%}([o,u,x))
F€Bc([0,1],x)
< Nx = Ty llzx) + e (X)) T [l 2oymeg

l1

+e Y X))@ = Tie)llzeon . (14)
l=lo+1
Proof. Denote
R = Ti® Il € Z(C([0,1], X)). (15)

From (5) and (11) we get

A = AMXR, + Z AYOX(R — R_y). (16)

Ny W ng,w
I=lp+1

To prove (14), let f € Be(o,1),x). Then by (16),
155" f — At flleqo.x)
< IS5 f = S5 Bi, flleqoax) + 1155 Rio f AOTXRlofHC([O,l],XlO)

Ny, W

I

S (YR = Risy) f — A2 (R — Risy) f)

I=lp+1

+

C([0,1],X;-1,1)



We have, using (2),

155" f = S5 Ry flleqoanxy < 155 lzcqonxnllf — Bu flleqox)
< |Mx =Ty llzexl flleqounx) < Hx — Ty ll.2x)- (18)

Furthermore, by Proposition 1

1/2
E (155 Ruuf = A% R f2 0.3, )
—1/2
< en(Xi) 1 Tholl 2 xoyny, - (19)
For Iy < | <l; we obtain
X 0,0,.X 2 1/2
E (1155 (Re = Ria)f = A2 (R = Ri) o, )
< en(Xi )T = Tiallzeom 2. (20)

Combining (17-20) yields the result. O

4 Parametric Indefinite Integration

Let d € N, Q = [0,1]%. The indefinite parametric integration operator S :
C(Q x [0,1]) = C(Q x [0,1]) is given by

(Slf)(s,t):/of(s,T)dT (s€Q.teo1]).

This problem is related to the Banach space case from the previous section as
follows. With X = C(Q) we have the identifications

C@x[0,1)) = (0.1, X), S =557,
Let r; = max(r, 1) and define for [ € Ny
T, =P € Z(C(Q)). (21)

By (3), l
Tl 2y < e, | = Tid|| zem@),c@) < 227", (22)

where J : C"(Q) — C(Q) is the embedding. For p = (o, 1, (nlo)?:lo) € M the
algorithm AD7 defined in (11) takes the following form. For f € C(Q x [0, 1])

1,r _ r1,d 0,r
Au,wf - PQlo ((Anl()’w(fs>)sepd l )
r12'0

5> (Pﬁd——Rﬁf)<(A%Lanﬂsddl), (23)

I=lp+1



where for s € () we used the notation f; = f(s, -). Then
card (A7) < CZ 2% (w € Q), (24)

where card (AIILZJ) denotes the cardinality, that is, the number of function values
used in algorithm AL’L (see also the general remarks before Theorem 1 below).
Moreover, we have A7 € Z(C(Q x [0, 1])) and it follows from (6) that

(A1) (5.0)=0 (s€Q) (25)

We also consider the following subset .#y C .# corresponding to one-level algo-
rithms

%0 = {,LL S M n = (107 l(]?nlo)} (26)
thus, for ug € Ay,

Aig,wf = P;lgd ((A%zz ,w(fs)) serd > : (27)

Parts of the following result (relations (30) and (33)) were shown in [3], Propo-
sition 4. We prove that algorithm A;IIL simultaneously satisfies the estimates (32)
and (33). The former is crucial for the stability analysis of the iteration in Sec-
tion 5. We note that, due to the multilevel structure of Ai’@ relation (32) is not
trivial (a trivial estimate would be clog(n+1)). Some of the choices of multilevel
parameters from [3] are not suitable to obtain both estimate simultaneously. So
here we provide modified choices and verify the needed estimates for them, still
using the analysis of [3].

Proposition 3. Let r € Ny, d € N. There are constants c_g > 0 such that the
following hold. For each n € N there is a ug(n) € My such that for all w €

card (A;ljor(n),w> < an (28)

sup  [[S1f = A o fle@xon < e (29)
F€Bc(@x[o0,1))

sup  |Suf = A ofle@xoay < e T (30)
fEBcr(@x[o,1])

Moreover, for each n € N there is a u(n) € A such that

ILIulea()Z((iaI'd (Ai,{n),w) < an (31)
1,r 2 1/2
sup <E 151f — AM’(n),waC(Qx[og])) < G (32)
feBo(gxio,1)
Lr 2 12 - V2
s (EISif = Al 2ooy) S con " (log(n+ 1)) (33)
FeBergx(o,1))



with

2 geors s if >3
nm=q A0 4T A (34)
5 if 5<3 v e o1
a b oa<s
Proof. Let n € N, put
1 1 d .
e R R P R e

and po(n) = (lo, lo, ). For this choice relations (28) and (30) were shown in [3].
Relation (29) readily follows from (3), (7) of Proposition 1, and (27).
To prove (31-34), let u(n) = (lo, b1, (nu, )it 1) € A, with Iy and ny, given by

(35), and Iy, (ny,)iL Y41 to be fixed later on. For brevity we denote for ¢ € Ny,
. ) 1/2
Epn) = s (EISif = Al o Flomony)
fE€Bce(@x[o,1])

We show that for o € {0,r}

Iy
Ey(pu(n)) < 27 (o + 1) e D7 (14 1) 2 (36)
I=lp+1

By (63) in [3], this holds for o = r. It remains to prove the corresponding estimate
for r > 1, o = 0. By (12) and (21)

Xi = P(C(Q), (37)
therefore X;_; C X; and, by (13), also X;_;; C X, for [ > 1. As shown in [3],
m(Xi_1y) < (X)) < (L +1)YV2, (38)
We conclude from (14) of Proposition 2, (22), and (38) that

I
Eo(p(n)) < c+cllo+ 1) e > 1+ 1) 202, (39)
I=lp+1

which shows (36) for o = 0.
From (35) we conclude

dal*

d(l* —lo) > pn

> lO)

thus,

nl_og 1/2 2—(@+1/2)d(l*—l0) S 2—Qlo—d(l*—lo)/2 — 2—gl0nl—01/2‘



This means that we can include the middle term in (36) into the sum, which gives

B(u(n) < @4 e S04 R (g {0r)). (10)

If r > d/2, we set

(r+1/2)d .
=——" |1 = |~"].
r(d_'_l)) 1 ’;Y_I
Then
L< <1
d+1 75"

Indeed, the left hand inequality is obvious, while the right-hand inequality is a
consequence of the assumption r > d/2. With (35) it follows that

lo <l <I*.
We choose a 6 > 0 in such a way that

r—6/2 > dJ2, (41)

5<7—3%7) < d(1-~) (42)

and put
n = "2d(l*_l)—5(l—lo)-‘ (I=1Iy+1,....1).

From (40-42) and (35) we obtain

I
E,(u(n)) < 7™ 4 ¢(I* + 1)1/2 Z 9—rlo—(r—8/2)(1~lo)~d(1*~1)/2
I=lo
C2_(T‘|C>l}'—/12)dl* + C(l* + 1)1/22_rl0_d(l*_lo)/2
%l* r+1/2 1/2

< c(I*4+ 1)V < cen” @t (log(n+ 1))

IN

Furthermore, using (40) and (42),

l1
Eo(u(n)) < cte(l” +1)Y/2 Y gli-to)/2-d-n/2
1=lg

< e e(lr + 1)V l)2=d =)/
< ool + )20 )0 <

By (24) the number of function values fulfills

ll ll
card (A}L’{n),» < CZ n 2% < 24 4 CZ odl"=0(l=lo) < ¢y, (43)
1=lo 1=lo



This proves (31-34) for r > d/2.
If r=d/2, we set [y = I*, put

n = max (29D [+ D)2 D2)) (1=l 4 1, 1)
and get from (35) and (40),

l*
Er(;z(n)) S CQ—T’l* +C(l* + 1)1/222—rl—d(l*—l)/2
I=lo
< e(IF +1)3227 2 < enm V2 (log(n 4 1)), (44)
I I*
Eo(u(n)) < c+el*+1)12 Z nl_l/z <c+ CZ 271/ <o (45)
1=l I=lo
The cardinality satisfies
I I
Card (A/ljl7(7’n)’w> S CZ nlzdl S Cle* + CZ (le* + (l* + 1)2d(l*+l)/2)
I=lp I=lo
< o' +1)2% < enlog(n +1). (46)
Transforming nlog(n + 1) into n in relations (44-46) proves (31-34) for this case.
Finally, if r < d/2, we set

Lo =1"—[d " logy(I" + 1)] (47)
choose a § > 0 in such a way that
(d—0)/2>r (48)
and put
n; = (2d(l*,l)*5(llfl)" (I=1lg+1,...,L). (49)

This is the same choice as in the respective case of the proof of Proposition 4 in
[3]. Clearly, there is a constant ¢ > 0 such that lp < 3 for n > ¢. Forn < ¢
the statements (32) and (33) are trivial. It was shown in [3] that with the choice
above card(Ai{n),w) < ¢n and that relation (33) holds. Arguing similarly, we
derive from (35), (36), (47), and (49) for the case o =0

Eo(p(n)) < c+c(l* 4 1)Y/22-40" )2
l1
+e(I* 4+ 1)1/2 Z 9—d(l*~11)/2—(d—8)(11—1)/2
I=lp+1
¢+ c(l* +1)Y2-dl" )/
c+ c(l* + 1)1/22—(log2(l*+1))/2 <ec,

IAINA

which is (32).
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5 Fixed Point Iteration for Parametric ODEs

Here we apply the above results to the following problem. Let d,q € N, r € Ny,
Q = [0,1], and let Cf;,(Q x [0,1] x R?, R?) be the space of functions f € C"(Q x
[0,1] x R? R?) satisfying for s € @, t € [0,1], 21, 22 € R?

Hf<87t7 zl) - f(s’tJZQ)H]Rq

| flLip := sup < 0. (50)
SEQ,E[0,1],21 #22€ERY |21 — 22[|ra
The space Cf,;,(Q x [0,1] x R?,RY) is endowed with the norm
£ lleg,, @xlo,1)xrazay = max (|| fllor@xo,xre,ra), | flLip) - (51)

If r =0, we also write Cpip(Q x [0,1] x R?,R?). We consider the numerical
solution of initial value problems for systems of ODEs depending on a parameter

s€EQ

au((;t’t) = [fls,tu(s 1) (se€Q,te(0,1]) (52)
u(s,0) = wuo(s) (s€Q) (53)

with f € CLip(Q %[0, 1]xR9, R?) and ug € C(Q,R?). A function u : @x[0, 1] — R?
is called a solution if for each s € @, u(s,t) is continuously differentiable as a
function of ¢ and (52-53) are satisfied. Due to the assumptions on f and wug
the solution exists, is unique, and belongs to C(Q x [0, 1],R). Let the solution
operator

Sy : Crin(@ x [0,1] x R%,RY) x C(Q,R?) — C(Q x [0, 1], RY)

be given by Sa(f,ug) = u, where u = u(s,t) is the solution of (52-53). Further-
more, fix £ > 0 and let

F;(li) = HBCEip(QX[O71]XRq7Rq) X HBCT(QJR(]). (54)

Classical results on the regularity with respect to ¢ and the parameter s (see, e.g.,
[23]) give

sup [|S2(f, uo)|
(fsu0)€F5 (x)

Now let f € CLip(Q x [0,1] x R?,RY9) and uy € C(Q,R?). We rewrite (52-53)
in the equivalent form

cr(@x[0,1],R7) < C. (55)

u(s, t) = up(s) +/0 f(s,mu(s,7))dr (s€Q,tel0,1]). (56)

Let m € Nand t; =im™ (i =0,...,m). We solve (56) and thus (52-53) in
m steps on the intervals [t;,t;41] (1 =0,...,m —1). Let

Sl,i : C(Q X [tz‘,ti+1],Rq) — C(Q X [ti,ti+1],Rq>

11



be the ¢-dimensional version of the solution operator of parametric indefinite
integration on [t;, t;11], i.e., for g € C(Q X [t;, tiv1], R?)

q

(Slﬂ'g) (S,t> = (/t gl(S,T)dT> (t € [ti,tiJrl]), (57)

=1

where g; are the components of g. Let A ", be algorithm A1 " from (23), scaled
to [t;, t;11] and applied to each Component of g, that is

(A09)(5:8) = (™ (ALgi ) s, mlt = 1)) (H€ litina]),  (58)

I=1
with
g (s,7)=aq(s,t; +m~ ') (7 €10,1]). (59)
Let
A = {(m, Mk, (;)25) : m, M,k €N, (u;)}=5 C A} (60)
Mo = {(m, Mk, (1)) € N = (my)i) € e} €N, (61)
where .# and .4, were defined in (10) and (26), respectively, and let r =

max(r,1). For v = (m, M, k, (uj);€ ) € A define ugp = P %y and for i =
0,....m—1,7=0,....k—1, s € Q the iteration

tiga(s,1) = uio(s) + (A, 005)(5,1) (¢ € [ti,tia]), (62)
where
9ij(s: 1) = f(s,t,uii(s,1)) (¢ € [ti, tiga]), (63)
and
Uit1,0(8) = win(s, tix1)  (t € [tiv1, tiga], i S m —2). (64)
We assume that the involved random variables (Airw):nj """ are independent.
Furthermore, for s € @, t € [0, 1] put
. U,Z‘k(S,t) if te [tiati+1)7 1 S m— 2
uw(5,1) = { U1 1(5,8) It € [tmot, b (65)
AZT(fouo) = . (66)

Clearly, u;; € C(Q x [ti, tiy1], R?). Moreover, it follows from (58) and (25) that
(Airzwglj)(‘g? t;) =0,
and therefore (62) yields
Wi (s, t:) = uio(s) = w1 p(s,t;) (1<i<m—1,s5€Q),

hence v € C(Q x [0, 1], R9). Next we give error and stability estimates for A7,

12



Proposition 4. Letr € Ny, d,q € N, kK > 0. Then there are constants c;_¢ > 0
such that the following hold. For each n € N there is a vo(n) € A4 such that for
all w € Q)

card (Az(’f(n)’w) < on (67)
sup  [[Sa(fy o) — AL o (Fr o) lo@xp gy < can @ (68)
(fuo)€Fy (x)
and for (f,uo), (f, i) € F(k)
| A2 o). w0) — n),w(ﬁﬂo)HC(Qx[o,u,Rq)
< 03(||f — f||C(Q><[0,1]><Rq,Rq) + [Jug — ﬁo”c(Q,Rq))- (69)

Moreover, for each n € N there is a v(n) € A such that

max card (Ai(:l w) < o, (70)

weN

- 1/2
sup <E 152 uo) — Ai (f» UO)”C(QX [0,1] Rq)>
(fiu0)€F5 ()

< csn 7 (log(n + 1)), (71)

with 11 and 95 given by (34), and for (f,uo), (f, i) € FY(x)

2,r 1/2
(B A2 (o) = A% (T @) o zn)
< c(lIf - fHC(QX[O,l]XRq,Rq) + [luo — tollo(ora))- (72)

Proof. We prove (70-72), the proof of (67-69) is analogous, just simpler. For the
sake of brevity we set
e(n) =n""(log(n + 1))". (73)

By Proposition 3 and (57-59) there are constants ¢, ¢(1), ¢(2) > 0 and a sequence
(u(n))22, C A such that for m,n € N

max card (Al " ) < en, (74)

weO) (n)iw | —

for f € C(Q X [t tir1], RY)
EHS f Al?” f”2 1/2 < C(l)m_l”fH (75)
1 u(n)iwd 1C(Qx[ti,tir1],RT) > C(Qx[tstiy1],R9)

and for f € C"(Q X [ti, ti41], RY)

1,r 1/2
(E ||S172-f Au(n )% waC (@ [tisti+1], Rq))
< c2)me()|| fller@xfti tesa] re)- (76)
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In the rest of the proof we reserve the notation ¢(1) and ¢(2) for the constants in
(75) and (76). We need the following stability property, which is a consequence
of (75) and the linearity of A, ;.0 For fi, fo € C(Q X [t;, tiy1],RY)

1,r 1,r 2 1/2
(E HA'u,(n)?i’wfl - Au(n)’i,waHC(QX[ti,tiJrl],Rq))
< |IS1i(fr = f2) le@x(ti i) Re)

. 1/2
+ (BIS1i(h = ) = Ayl = ) Eontotiontien)
< (C(l) + 1)m_1||f1 - f2||C(QX[ti7ti+lLRq)‘ (77>

We choose m € N in such a way that
0 :=(c(1)+1)m ‘s <1/2. (78)

Now we fix n € N and define

log, n + log, m

M = [nV1 = |[21982 2 1

[n'1, { —log, 0 M (79)
k—1—j

nj = ’7710 " —‘ (] = Oa ceey k — 1)7 (8())

and set
v(n) = (m, M,k,u(nj);‘f’;é) )

Then the cardinality of algorithm Ai’{n) ., Satisfies

k-1 k-1
k—1—j
card (A?j’(rn)w) < cM?+ cman <ecn+ cmz [nG W1+1]—‘ <cn

j=0 7=0

(note that by the choice (78), m is just a constant). This shows (70).
Next we prove the error estimate (71). Let (f,uo) € F3 (k). By (3) and (34)

|lu(-,0) —uoollcre) = Huo — P}\}’duoHC(Q’Rq) <en "t <ep T, (81)
Setting
g(s,t) = f(s,t,u(s, 1)), (82)
we get from (55)
lgllor@xpo.re < e (83)
Moreover, (63) implies
19 = gijllc@xittire < Kllu — uijllc@xti iy re)- (84)

We have
u(s,t) = u(s,t;) + (S1.9)(s,t) (s € Q,t € [ti, tit1]).

14



We estimate, using (83), (84), (76), and (77)
) 1/2
(E Ju— ui,j+1“C(Qx[ti,tiJrl],Rq))

) 1/2
C(QX[ti:tiH]:Rq))

1r
< (E Hu( ' >tz) + Sl,ig — U0 — A,u(nj),i,wgij

S1,i9 — Al

w(rng)iw

) 1/2
C(QX[tz‘vtiﬂ]qu))

1/2
)
‘2

1/2
C(QX[tivti+1]qu)>

1/2
< (Bl 1) — wiolZosn) + (E |

2

EE HA].,?" ) _Al,’/’ ) »
+ ( ( /’«("j)»’vwg H(nj)vszg] C(Qx[ts,tir1],R9)

1/2 1,r
S (]E ||U( . 7251) - uiy0||%(Q7Rq)) + (E HSL@Q - Au(nj)7i7wg
1 9 1/2
+(c(1) + )m (E lg — ginC(QX[ti,ti_‘_l],Rq))

1/2

< (Elju(-,t;) — ui,OHQC(Q,R‘I)) + c(1ym™"e(ny)

, 1/2
+0 <E ||U - uinC(QX[ti,ti+ﬂqu)> ' (85)

We get from (85) by recursion over j

) 1/2
(E Hu - uik||C(Q><[ti,ti+1]7Rq)>

k—1 k—1
1/2 1 — ]
< (Bl 1) —winlEgrn) " D¢ +eLm™ D Pe(n )
=0 =0
1/2

N 2
+0 (E llu — uip”C(QX[ti,tiJrl]:Rq)

E

1/2 ;
S ek Hu, - u( . 7ti)||C(QX[ti,ti+1],Rq) + (E HU( . 7t7/) - U”L,OH%(QJRQ)) Z 9‘7

j=0
k—1
+e(ym™ " Fe(ng_j1). (86)
j=0
By (55) and (79),
0% [lu — u(- t)lc(oxfispny gz < 0" < em™ ™ (87)

Moreover, (78) implies




Finally, using (80) and (73), we obtain

k1 k-1
Y We(mj1) = Y 00 (log(ng—j 1+ 1))
j=0 Jj=0
Al Y17
< N 0 (log(n + 1)
=0
k=1
= n Mlog(n+1))" Z G < en M log(n + 1)), (89)
=0

Combining (86-89), we conclude

) 1/2
(E [ uikHC(QX[ti,tiJrl]:Rq))

< em " (log(n 4 1)) + (1 + 26) (IE u( -, t;) — ui,OHQC(Q,Rq))l/Q

. (90)

In particular, taking into account (64), (78), and (81), we obtain by recursion
over 1,

1/2
(Eflul-, tiv1) — wiv10llEQrn)

< em~'n " (log(n + 1)) Z(l +20)" + (14 20)H|u( -, 0) — ugollc@ra
1=0
< c(1420)"n " (log(n + 1)) < en " (log(n + 1))72.

Inserting this into (90), we get

1/2 B
(B llu = it 2gnrtrryen) < on” " (log(n + 1))

and hence,

. 1/2
(B lle = 427, (. w0) 2 @iouen))

= (Ellu- uy(n)HQC(QX[()71]7R¢Z))1/2 < emn M (log(n + 1)) < en " (log(n + 1))2,

which is (71). )
Finally we prove the stability (72) of algorithm Ai’&%w. Let (f,uo), (f, o) €
FJ(k), let @;; and g;; be defined analogously to (62-64) and set

gij(s,t) = f(s,t,5(s, 1)) (s € Q,t € [ti, tip1]). (91)
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From (62) we get

) 1/2
<E i i1 — ui,jJrl”%‘(Qx[ti,tiHLRQ)>

< (Eljuio — ﬂi,0||2C(Q,Rq))1/2
1,r 1,r * 2 1/2
< HA (nj “’ng A (nJ)vawgzj C(QX[ti,ti-&-l]aRq))
. <E HAL" A” i 2 >1/2
w(ng),iw w(ng),iwdti C(Qx[titi+1],Re) .

We have by (82) and (91)

9ij(s,t) — gi;(s,t) = f(s,t,ui(s,t)) — f(s,1,15(s,1)),

hence
19i5 — g5l c@xitntinre) < Ellug — ijllo@xit i) ra)-

It follows from (77) that
) 1/2
C(QX[ti,ti+1],Rq))

1,r 1,r * 2
= (EE (HA (n; g —A (n]),z,wgm C(Qx [t ti11],RY)
1/2
< (o) + D (B g — 6512 0xoisnan
. o 1/2
< (e()+1)m™ K <E l|uij — uinC(QX[ti,tiJrl],]RQ)) :

Similarly,

1,r 1,r *
< HA (n),iw9ii — Au(n]-),i,wgij

g;}(S,t) — §ij(s,t) = f(S,t,fLij(S,t)) — f(S,t,fLij(S,t)),

which yields

195 = Gijllc@xititivnrey < IIf = fllo@xoxrare)-

) 1/2
C(Qx [ti,ti+1]aRq))

2
B (EE (HAl’,;T lwgzj Al :%)J’ng

3 . ~ 1/2
< (et) + Dm (E gl = 5islaxi sz
< (D) + D)mYf — flle@x(oxrers)-

Using again (77), we conclude

1,r 1,r ~
<E ’A (n)iw9i5 ~ Apng) i 9is

1/2
)

C(@x[tisti+1],R?)

17
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(93)



Combining (78), and (92-94), we obtain

. ) 1/2
(E Wi jr1 — Ui jia ||C(Q><[ti,ti+1],]1§q))
~ 1/2 _ I
< (Euip — @ipollz g r)) P4 (e() + )m I = flle@xioxrera)
o 1/2
0 (E Jlusg = il @) -

Recursion over j together with (88) gives

1/2
(Bl = a2t a0
< ((Blluio = TiollEgrn) " + 1) + Dm 7 If = Floxio ez
X(1+0+--+61) + 6 (E |l wio — ﬂi,o||QC(Q,Rq)>1/2
< (1+20)(c(1) + Dm | f = Flle@xoaxra o)

o 1/2
(14 26) (E ||ui,0—ui,0||C(Q7Rq)) . (95)

Consequently, recalling (64) and using recursion over i, we obtain

- 2 1/2
(E |%it1,0 — ui+170||C(Q,Rq)>
< (1420)(c(1) + V)m Y f = Fllo@xoxr gy
-2 1/2

+(1 + 26) (E llwio — ui,O”C(QJRQ))
< (14204 (1420 + -+ (1+20)")(c(1) + Dm ™

X|1f = Fllo@xio.nxra ray + (14 20)"lug — dol|c(g ra)
< cllf = Flle@xouxrare + [[wo — tollciqre))-

Combining this with (95) yields

i 112 ) i
(E [wir, — uik”%(@x[ti,tiﬂ],Rq)) < c(|[f = flle@xpaxraray + [[uo — tollc@ra))
and finally

- 1/2
2,r 2r ~
(B11A% o 10) = A2 (F 50 o o))

< elf = Fllow@xioxrsre + l[to — dollc@rs)-
O

Now we will work in the setting of information-based complexity theory (IBC),
see [24, 22]. For the precise notions used here we also refer to [10, 11]. An abstract
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numerical problem is described by a tuple (F, G, S, K, A), with F' an arbbitrary
set — the set of input data, G' a normed linear space and S : ' — G an arbitrary
mapping, the solution operator, which maps the input f € F to the exact solution
Sf. Furthermore, K is an arbitrary set and A is a set of mappings from F' to K
— the class of admissible information functionals.

The cardinality of an algorithm A, denoted by card(A), is the number of infor-
mation functionals used in A. Let ¢i°(S, F, G), respectively (S, F, G), denote
the n-th minimal error in the deterministic, respectively randomized setting, that
is, the minimal possible error among all deterministic, respectively randomized
algorithms of cardinality at most n. The cardinality of an algorithm A is closely
related to the arithmetic cost, that is, the number of arithmetic operations needed
to carry out A. For many concrete algorithms, including all those considered here,
the arithmetic cost is within a constant or a logarithmic factor of card(A).

To put the parametric ODE problem into the setting above, let

S=5,, F=Fk), G=CQxI[0,1],RY), K=RY
and let Ay be the following class of function values
Ay ={0s1.: s€Q,t€0,1],zeRI}U{ds: s€Q},

where d5,.(f, uo) = f(s,t,2) and 05(f, up) = uo(s).

The following theorem extends a result on the complexity of parametric ODEs
from [4]. There the Lipschitz condition was imposed on f and on certain deriva-
tives of f up to order r, here the Lipschitz condition is required for f alone. This
is also of importance for the applications to PDEs in the next section.

Theorem 1. Letr € Ny, d,q € N, Kk > 0. Then the deterministic n-th minimal

errors satisfy
ent (S2, F5 (1), C(Q x [0,1],R)) =< ™ 7.

For the randomized n-th minimal errors we have the following: If r/d > 1/2, then

r+1/2

e (Sa, Fy (), C(Q x [0,1],R7)) < n™ @51 (logn)?,
if r/d=1/2, then
n2(logn)? < €™ (S, FI(k),C(Q x [0,1],RY)) = n"2(logn)?,
and if r/d < 1/2, then
(S, FI (k), C(Q x [0,1],R?)) < n~i(logn).

Proof. Proposition 4 gives the upper bounds. To prove the lower bounds, we let
up = 0 and consider functions f = f(s,t) not depending on z. In this sense we
have kK Bergxjoa)re)y C F3 (k) and for f € kBergx(o,1),re)

(&&ﬁ%@=éf@mﬁ@€®-
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This means that parametric definite integration of C"(Q x [0, 1], R?) functions
reduces to Ss, so that the required lower bounds for parametric ODEs follow
from [14].

O

6 Almost Linear First Order PDEs

Let d,r € N (note that throughout this section we assume r > 1), Q = [0, 1],
and £ > 0. Given

(f,g, UO) € Fg(ﬁ) = RBCT([O,I]XRdJRd) X ’%BCT([O,I]XRdXR) X KJBCr(Rd), (96)

f=(f1,..., fa), we consider the following scalar first order almost linear PDE

0 oz;
u(0,2) = wup(z). (98)

d
au<t£$)+2fi(t,x)au<t7x) = gltoute) (@eRLre), (O

A solution is a continuously differentiable function u : [0,1] x R — R satisfying
(97-98). Due to the definition of Fj(k), the solution exists and is unique, see,
e.g., [23], as well as the discussion of the relations to ODEs below. We seek to
determine the solution at time ¢ = 1 on @, thus, we set G5 = C(Q) and define
the solution operator by

Sz F(k) = C(Q),  (S3(f,9,uw))(x) =u(l,z) (ze€@)

Furthermore, we put K = R? UR and let A3 be the following class of function
values

Ay ={01p: t€[0,1],2 € R} U{8,.: t€[0,1,7 € RY 2z R}U{J,: € Q},
where
5t,93(f7g7u0) = f(taw)a 5t,z,z(f7g7u0> = g(t,l‘, Z)7 5w(fagau0) = Uo(LE)

We use the method of characteristics. We want to find £ : Q x [0,1] — R¢
such that for s € Q, t € [0, 1],

BB pgs.) (99)
(s,1) = s (100)

Observe that, due to (96) and the assumption r > 1,
”f”CEip(QX[OJ}x]Rd,]Rd) < Vdk (101)
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(in the sense that f = f(¢, z) is considered as a function not depending on s € Q).
Thus, the solution of (99-100) exists and is unique. Denote

&:Q—=RY &s)=s (s€Q).
Let
Sy : Crip(@Q x [0,1] x R4 RY) x C(Q,RY) — C(Q x [0,1],RY)

be the solution operator of parametric ODEs studied in Section 5, with the dif-
ference that the starting time is ¢t = 1 and the ODE is considered backward in
time (clearly, this does not affect the error estimates of Proposition 5, provided
the algorithms are modified in the corresponding way). So we have

5 = S’Q(fa 50)

Furthermore, ||&||cr(rae) = Vd, and consequently, by (55) and (101), there is a
k1 > 0 depending only on 7, d and « such that

[€ller@xo,rey < K- (102)

We define h € Cpi,(Q % [0,1] x R) and wy € C(Q) by setting
h(s,t,z) = g(t,&(s,t),z2) (103)
wo(s) = wuo(£(s,0)) (104)

for s € Q, t € [0,1], z € R. By (96) and (102), there is a ks > 0 also depending
only on r,d and x such that

(h,wo) € Fy(ky) C Fy (k). (105)
Next we seek to find w : @ x [0,1] — R with

ow(s,t)
o = h(s,t,w(s,t)) (s€Q,te[0,1])

w(s,0) = wo(s) (s€Q).

Then we have
w = SQ(h, wo), (106)

where

Sy 1 CLip(@Q x [0,1] x R) x C(Q) — C(Q x [0,1])

is the respective solution operator of parametric ODEs, here with ¢ = 1 and
starting time ¢t = 0. The following is well-known (see again, e.g., [23]).

Lemma 1. If u(t,z) is the solution of (97-98), then
u(t,&(s,t)) =w(s,t) (s€Q,tel0,1]). (107)
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It follows from (100) and (107) that

u(l,s) =w(s,1) (s€Q),

hence by (106)
S3(f, 9, u0) = (S2(h,wo)) (-, 1). (108)
Now let 0 = (7,v) € A2, where A4 was defined in (60), and let Ai; be
the algorithm (62-66) for Ss. Similarly, let AE::) be the respective algorithm for

Sy. We assume that the random variables 1213:; and A%7

', are independent. Define
& € C(Q x [0,1],RY) by

& = AL(f.&) (109)
and hy € CLip(Q x [0,1] x R), wo; € C(Q) by setting for s € Q, t € [0,1], z € R
hi(s,t,z) = g(t,&(s,t),2) (110)
wo,(s) = uo(&s(s,0)). (111)

It follows from (96) that
(hs,woz) € F3 (k). (112)

We define algorithm Ai’;;; for S3 by setting for s € )

(A55(f,9,u0)) (5) = (ADL(hs, woz)) (s,1). (113)

We have A3 (f, g,up) € C(Q). The following result provides error estimates for

W

A% (recall also the definition (61) of .4).

Proposition 5. Let r,d € N, k > 0. There are constants c¢y_4 > 0 such that the
following hold. For each n € N there is a oo(n) € A such that for all w € Q.

card (Aig"(n)’» < cn (114)

sSup HSS(fvgau(J) _Aijor(n)vw(f7g7u0>”0(@) < CZn_#- (115)
(f,9:u0)€F (k)

Moreover, for each n € N there is a o(n) € A such that

sup card (Ai’(n%w) < en (116)

weN

i 1/2
sup  (E[1S5(f,9,u0) — A%, (F,.9.w0) g )
(f,9:u0)EFY ()
< eqn " (log(n + 1)), (117)
with v1,7v2 given by (34).
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Proof. Again we only prove the stochastic case (116-117), the deterministic case
being analogous. Let (7(n))22; be such that (70-72) of Proposition 4 hold for
S,. Similarly, let (v(n))22, be a respective sequence for S;. We put o(n) =
(r(n),v(n)). Now let n € N, (f,g,u0) € Fj(r). By (71-72) of Proposition 4,
(105), (112), (113), and (108)

(E HS?)(fa g,up) — Ai’{n),w(f, 9, UO)HZ(Q)> -

- <IE (Sz(h,wo))(wl)—(Az’&),w(hﬂ("”“’0’”(”))>("DHZ ))1/2

c@

9 1/2
C(QX[O,H))

9 1/2
C(QX[M]))

+ (B [[427, (b w0) = 25, o wnseo)

< <E 52(h7w0>_Aikcl)w(hf/(n)ywo,ﬂ(n))

v(n),w

< <E SQ(h, ’LU()) — AZT (h, U)O)

2

1/2
fﬂ(n))

c(@x[0,1])

_ 1/2
< en M (log(n + 1)) + ¢ (E |h — hﬂ(n)HQC(Qx[o,l]xR))

v (118)

+c (E[Jwo — wo o)l Eq))
By (103), (110), and (96), for s € Q, t € [0,1], z € R

|h($> t, Z) - h’f/(n)(S’ t> Z)| = |g(t7 5(37 t)? Z) - g(ta gﬁ(n)(sﬁ t)a Z)|
< VaRlE(5,) = €t (. Dle (119)

and similarly, by (104), (111), and (96),

[wo(s) = wo sy (s)] = [uo(€(5,0)) = tio(Enny(s, 0))]
< Vdk|&(s,0) = &) (s, 0) e (120)

Furthermore, using (101) and (71) of Proposition 4, we obtain
) 1/2
(E 1€ — Eom) HC(QX[O,l],Rd)>

) 1/2

B ~ A2

_ (E S2(f,€0) = Apy o (f>€0) 0<Qx[0711,Rd>)

< en " (log(n + 1)), e

From (119-121) we conclude

1/2

IA

en” " (log(n + 1)) (122)
en” " (log(n + 1)), (123)

(E ||h - hf/(n)HQC(Qx[o,l]xR))

1/2
(E [|wo — Wo,i7(n) ||20(Q))

IA
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Combining (118) and (122-123), we obtain the desired result (117). Relation
(116) follows from the definition of Ai’(rn)’w and (70) of Proposition 4.
[l

The following theorem gives the deterministic and randomized minimal errors
of the first order almost linear PDE problem.

Theorem 2. Let r,d € N and k > 0. Then in the deterministic setting,
ent (S5, Fy (r), C(Q)) = n™ a1

In the randomized setting, if r/d > 1/2

_ r+1/2

e (S, Fy (1), C(Q)) = n~ & (logn)?,

if r/d=1/2, then
n”2(logn)? < e (S3, F (k), C(Q)) = n”#(logn)?,
and if r/d < 1/2, then
e (83, Fy (1), C(Q)) < n” i (logn) 4.

Proof. The upper bounds follow from Proposition 5 above. To show the lower
bounds, we set f = 0, up = 0, and consider g = ¢(¢,x) not depending on z. Let
CH([0,1] x R?) be the subspace of C"([0,1] x R?) consisting of all functions g
satisfying

suppg(t,-) € Q (t €[0,1]).

Then g € RB%([O’HXW) implies (0, g,0) € F§ (k). Moreover,

(S5(0,9,0)) () = / g(t.o)dt (x € Q).

thus parametric definite integration of Cf([0,1] x R?) functions reduces to Ss,
and the lower bounds follow from [14] (it is readily seen from the proof in [14]
that the lower bound also holds for the subclass of functions with support in Q).

[]

Note that to obtain this result it was crucial to have Proposition 4 and Theo-
rem 1 for parametric ODEs under the Lipschitz condition as imposed in definitions
(50), (51), and (54). If we wanted to apply the results of [4] to get the upper
bounds as stated in Theorem 2, we would have to ensure the stronger Lipschitz
condition from [4] (involving derivatives up to order r). This would mean to re-
quire (f, g,ug) € F3(x), which, in turn, would lead to gaps between the upper
and lower bounds in Theorem 2 (in the lower bounds r would have to be replaced
by 7+ 1).
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