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Abstract

We present an iterative Monte Carlo procedure to solve initial value
problems for systems of ordinary differential equations depending on a
parameter. It is based on a multilevel Monte Carlo algorithm for paramet-
ric indefinite integration. As an application, we also obtain a respective
method for solving almost linear first order partial differential equations.
We also consider deterministic algorithms.

We study the convergence and, in the framework of information-based
complexity, the minimal errors and show that the developed algorithms
are of optimal order (in some limit cases up to logarithmic factors). This
way we extend recent complexity results on parametric ordinary differential
equations. Moreover, we obtain the complexity of almost linear first-order
partial differential equations, which has not been analyzed before.

1 Introduction

Monte Carlo (one-level) methods for integrals depending on a parameter were first
considered in [8]. Multilevel Monte Carlo methods for parametric integration were
developed in [14], where the problem was studied for the first time in the frame of
information-based complexity theory (IBC). These investigations were continued
in [3], where the complexity of parametric indefinite integration was studied for
the first time.

Recently there arose considerable interest in the numerical solution of various
parametric problems, also in connection with random partial differential equa-
tions, see [1, 7, 18, 19] and references therein. Deterministic methods for solving
parametric initial value problems for systems of ordinary differential equations
(ODEs) were first considered in [9].

The study of ODEs in IBC was begun in [15] for the deterministic case and
in [16, 17] for the stochastic case. The complexity in the randomized setting was
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further studied in [13, 2, 12]. The complexity of parametric initial value problems
for systems of ODEs was investigated in [4] and [5], where multilevel Monte Carlo
algorithms for this problem were developed and shown to be of optimal order.

Here we study function classes satisfying a weaker Lipschitz condition than
those considered in [4]. This is needed for the applications to the complexity
analysis for almost linear partial differential equations (PDEs). Moreover, we
present a new approach to solve initial value problems for ODEs depending on
a parameter. We develop an iterative Monte Carlo procedure, based on a mul-
tilevel algorithm for parametric indefinite integration. This leads to an iterative
multilevel Monte Carlo method for solving almost linear first order PDEs. We
also consider deterministic algorithms.

We prove convergence rates, determine the minimal errors in the framework of
IBC, and show that the developed algorithms are of optimal order (in some limit
cases up to logarithmic factors). This way we extend recent complexity results
of [4] on parametric ordinary differential equations. Moreover, the complexity of
almost linear first-order partial differential equation is determined, a topic, which
has not been considered before.

The paper is organized as follows. In Section 2 we provide the needed notation.
In Sections 3 and 4 we recall the algorithms from [3] on Banach space valued and
parametric indefinite integration, respectively, and improve some convergence
results. Section 5 contains the main results. Based on the results of Section 4
we study the iterative solution of initial value problems for parametric ordinary
differential equations. Finally, in Section 6 we apply the results of Section 5 to
the analysis of the complexity of almost linear partial differential equations.

2 Preliminaries

Let N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }. For a Banach space X the norm is
denoted by ‖ ‖X , the closed unit ball by BX , the identity mapping on X by IX ,
and the dual space by X∗. The Euclidean norm on Rd (d ∈ N) is denoted by
‖ ‖Rd . Given another Banach space Y , we let L (X, Y ) be the space of bounded
linear mappings T : X → Y endowed with the canonical norm. If X = Y , we
write L (X) instead of L (X,X). We assume all considered Banach spaces to be
defined over the field of reals R.

Concerning constants, we make the convention that the same symbol c, c1,
c2, . . . may denote different constants, even in a sequence of relations. Further-
more, we use the following order notation: For nonnegative reals (an)n∈N and
(bn)n∈N we write an � bn if there are constants c > 0 and n0 ∈ N such that for
all n ≥ n0, an ≤ cbn. Finally, an � bn stands for an � bn and bn � an. If not
specified, the function log always means log2.

Given a set D ⊆ Rd which is the closure of an open set, and a Banach space
X, we define Cr(D,X) to be the space of all functions f : D → X which are
r-times continuously differentiable in the interiour of D and which together with
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their derivatives up to order r are bounded and possess continuous extensions to
all of D. This space is equipped with the norm

‖f‖Cr(D,X) = sup
|α|≤r, s∈D

∥∥∥∥∂|α|f(s)

∂sα

∥∥∥∥
X

with α = (α1, . . . , αd) ∈ Nd
0 and α = |α1| + · · · + |αd|. For r = 0 we also write

C(D,X) and if X = R, we also write Cr(D) and C(D).
The type 2 constant of a Banach space X is denoted by τ2(X). We refer

to [20] as well as to the introductions in [3, 4] for this notion and related facts.
The injective tensor product of Banach spaces X and Y is denoted by X ⊗λ Y .
Definitions and background on tensor products can be found in [6, 21], see also
the introduction to [3]. Let us mention, in particular, the canonical isometric
identification

C(D,X) = X ⊗λ C(D) (1)

for compact D ⊂ Rd. We also note that for Banach spaces X1, X2, Y1, Y2 and
operators T1 ∈ L (X1, Y1), T2 ∈ L (X2, Y2), the algebraic tensor product T1⊗T2 :
X1 ⊗ X2 → Y1 ⊗ Y2 extends to a bounded linear operator T1 ⊗ T2 ∈ L (X1 ⊗λ
X2, Y1 ⊗λ Y2) with

‖T1 ⊗ T2‖L (X1⊗λX2,Y1⊗λY2) = ‖T1‖L (X1,Y1)‖T2‖L (X2,Y2). (2)

Let Q = [0, 1]d. For r,m ∈ N we let P r,d,X
m ∈ L (C(Q,X)) be composite with

respect to the partition of Q = [0, 1]d into md subcubes of sidelength m−1 tensor
product Lagrange interpolation of degree r. Thus, P r,d,X

m interpolates on Γdrm,

where Γdk =
{
i
k

: 0 ≤ i ≤ k
}d

for k ∈ N. If X = R, we write P r,d
m . Note that in

the sense of (1) we have P r,d,X
m = IX ⊗ P r,d

m . Furthermore, there are constants
c1, c2 > 0 such that for all Banach spaces X and all m∥∥P r,d,X

m

∥∥
L (C(Q,X))

≤ c1, sup
f∈BCr(Q,X)

∥∥f − P r,d,X
m f

∥∥
C(Q,X)

≤ c2m
−r. (3)

This is well-known in the scalar case, for the easy extension to Banach spaces see
[3].

3 Banach Space Valued Indefinite Integration

Let X be a Banach space and let the indefinite integration operator be given by

SX0 : C([0, 1], X)→ C([0, 1], X), (SX0 f)(t) =

∫ t

0

f(τ)dτ (t ∈ [0, 1]).

First we recall the the Monte Carlo method from Section 4 of [13], here for
integration domain [0, 1]. Given n ∈ N, we define ti = i

n
(0 ≤ i ≤ n). Let
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ξi : Ω → [ti, ti+1] be independent uniformly distributed random variables on a
probability space (Ω,Σ,P). For f ∈ C(Q,X) and ω ∈ Ω we define gω : Γ1

n → R
by

gω(ti) =
1

n

∑
0≤j<i

f(ξj(ω)) (0 ≤ i ≤ n).

Let r ∈ N0. If r = 0, we set

A0,0,X
n,ω f := P 1,1,X

n gω.

and if r ≥ 1,
A0,r,X
n,ω f = SX0 (P r,1,X

n f) + A0,0,X
n,ω (f − P r,1,X

n f). (4)

We write S0 and A0,r
n,ω if X = R. Observe that in the sense of identification (1)

we have
SX0 = IX ⊗ S0, A0,r,X

n,ω = IX ⊗ A0,r
n,ω, (5)

moreover, A0,r,X
n,ω ∈ L (C([0, 1], X)) and, since gω(0) = 0,(

A0,r,X
n,ω f

)
(0) = 0 (r ∈ N0). (6)

We need the following result which complements Proposition 2 in [3].

Proposition 1. Let r ∈ N0. Then there are constants c1, c2 > 0 such that for all
Banach spaces X, n ∈ N, ω ∈ Ω, and f ∈ C([0, 1], X) we have

‖SX0 f − A0,r,X
n,ω f‖C([0,1],X) ≤ c1‖f‖C([0,1],X) (7)

(E ‖SX0 f − A0,r,X
n,ω f‖2

C([0,1],X))
1/2 ≤ c2τ2(X)n−1/2‖f‖C([0,1],X). (8)

Proof. Relation (7) directly follows from the definitions. By Proposition 2 in
[3], there is a constant c > 0 such that for all Banach spaces X, n ∈ N, and
f ∈ C([0, 1], X) we have(

E ‖SX0 f − A0,0,X
n,ω f‖2

C([0,1],X)

)1/2 ≤ cτ2(X)n−1/2‖f‖C([0,1],X). (9)

This is the case r = 0 of (8). Now assume r ≥ 1. Then (3), (4), and (9) give(
E ‖SX0 f − A0,r,X

n,ω f‖2
C([0,1],X)

)1/2

=
(
E ‖SX0 (f − P r,1,X

n f)− A0,0,X
n,ω (f − P r,1,X

n f)‖2
C([0,1],X)

)1/2

≤ cτ2(X)n−1/2‖f − P r,1,X
n f‖C([0,1],X) ≤ cτ2(X)n−1/2‖f‖C([0,1],X).

We shall further study the multilevel procedure developed in [3]. Let (Tl)
∞
l=0 ⊂

L (X). For convenience we introduce the following parameter set

M =
{(
l0, l1, (nl0)

l1
l=l0

)
: l0, l1 ∈ N0, l0 ≤ l1, (nl0)

l1
l=l0
⊂ N

}
. (10)
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For µ ∈M we define an approximation A0,r
µ,ω to SX0 as follows:

A0,r
µ,ω = Tl0 ⊗ A0,r

nl0 ,ω
+

l1∑
l=l0+1

(Tl − Tl−1)⊗ A0,0
nl,ω

, (11)

where the tensor product is understood in the sense of (1). We assume that the

random variables A0,r
nl0 ,ω

and
(
A0,0
nl,ω

)l1
l=l0+1

are independent. We have

A0,r
µ,ω ∈ L (C([0, 1], X)).

Denote

Xl = clX(Tl(X)) (l ∈ N0) (12)

Xl−1,l = clX((Tl − Tl−1)(X)) (l ∈ N), (13)

where clX denotes the closure in X. In particular, Xl and Xl−1,l are endowed
with the norm induced by X. The following result complements Proposition 3 in
[3].

Proposition 2. There is a constant c > 0 such that for all Banach spaces X,
and operators (Tl)

∞
l=0 as above, for all µ ∈M

sup
f∈BC([0,1],X)

(
E ‖SX0 f − A0,r

µ,ωf‖2
C([0,1],X)

)1/2

≤ ‖IX − Tl1‖L (X) + cτ2(Xl0)‖Tl0‖L (X)n
−1/2
l0

+c

l1∑
l=l0+1

τ2(Xl−1,l)‖(Tl − Tl−1)‖L (X)n
−1/2
l . (14)

Proof. Denote

Rl = Tl ⊗ IC([0,1]) ∈ L (C([0, 1], X)). (15)

From (5) and (11) we get

A0,r
µ,ω = A0,r,X

nl0 ,ω
Rl0 +

l1∑
l=l0+1

A0,0,X
nl,ω

(Rl −Rl−1). (16)

To prove (14), let f ∈ BC([0,1],X). Then by (16),

‖SX0 f − A0,r
µ,ωf‖C([0,1],X)

≤ ‖SX0 f − SX0 Rl1f‖C([0,1],X) + ‖SX0 Rl0f − A0,r,X
nl0 ,ω

Rl0f‖C([0,1],Xl0 )

+

∥∥∥∥∥
l1∑

l=l0+1

(
SX0 (Rl −Rl−1)f − A0,0,X

nl,ω
(Rl −Rl−1)f

)∥∥∥∥∥
C([0,1],Xl−1,l)

. (17)
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We have, using (2),

‖SX0 f − SX0 Rl1f‖C([0,1],X) ≤ ‖SX0 ‖L (C([0,1],X))‖f −Rl1f‖C([0,1],X)

≤ ‖IX − Tl1‖L (X)‖f‖C([0,1],X) ≤ ‖IX − Tl1‖L (X). (18)

Furthermore, by Proposition 1

E
(
‖SX0 Rl0f − A0,r,X

nl0 ,ω
Rl0f‖2

C([0,1],Xl0 )

)1/2

≤ cτ2(Xl0)‖Tl0‖L (X)n
−1/2
l0

. (19)

For l0 < l ≤ l1 we obtain

E
(
‖SX0 (Rl −Rl−1)f − A0,0,X

nl,ω
(Rl −Rl−1)f‖2

C([0,1],Xl−1,l)

)1/2

≤ cτ2(Xl−1,l)‖Tl − Tl−1‖L (X)n
−1/2
l . (20)

Combining (17–20) yields the result.

4 Parametric Indefinite Integration

Let d ∈ N, Q = [0, 1]d. The indefinite parametric integration operator S1 :
C(Q× [0, 1])→ C(Q× [0, 1]) is given by

(S1f)(s, t) =

∫ t

0

f(s, τ)dτ (s ∈ Q, t ∈ [0, 1]).

This problem is related to the Banach space case from the previous section as
follows. With X = C(Q) we have the identifications

C(Q× [0, 1]) = C([0, 1], X), S1 = S
C(Q)
0 .

Let r1 = max(r, 1) and define for l ∈ N0

Tl = P r1,d
2l
∈ L (C(Q)). (21)

By (3),
‖Tl‖L (C(Q)) ≤ c1, ‖J − TlJ‖L (Cr(Q),C(Q)) ≤ c22−rl, (22)

where J : Cr(Q) → C(Q) is the embedding. For µ =
(
l0, l1, (nl0)

l1
l=l0

)
∈ M the

algorithm A0,r
µ,ω defined in (11) takes the following form. For f ∈ C(Q× [0, 1])

A1,r
µ,ωf = P r1,d

2l0

((
A0,r
nl0 ,ω

(fs)
)
s∈Γd

r12
l0

)

+

l1∑
l=l0+1

(
P r1,d

2l
− P r1,d

2l−1

)((
A0,0
nl,ω

(fs)
)
s∈Γd

r12
l

)
, (23)
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where for s ∈ Q we used the notation fs = f(s, · ). Then

card
(
A1,r
µ,ω

)
≤ c

l1∑
l=l0

nl2
dl (ω ∈ Ω), (24)

where card
(
A1,r
µ,ω

)
denotes the cardinality, that is, the number of function values

used in algorithm A1,r
µ,ω (see also the general remarks before Theorem 1 below).

Moreover, we have A1,r
µ,ω ∈ L (C(Q× [0, 1])) and it follows from (6) that(

A1,r
µ,ωf

)
(s, 0) = 0 (s ∈ Q). (25)

We also consider the following subset M0 ⊂M corresponding to one-level algo-
rithms

M0 = {µ ∈M : µ = (l0, l0, nl0)} (26)

thus, for µ0 ∈M0,

A1,r
µ0,ω

f = P r1,d

2l0

((
A0,r
nl0 ,ω

(fs)
)
s∈Γd

r12
l0

)
. (27)

Parts of the following result (relations (30) and (33)) were shown in [3], Propo-
sition 4. We prove that algorithm A1,r

µ,ω simultaneously satisfies the estimates (32)
and (33). The former is crucial for the stability analysis of the iteration in Sec-
tion 5. We note that, due to the multilevel structure of A1,r

µ,ω relation (32) is not
trivial (a trivial estimate would be c log(n+1)). Some of the choices of multilevel
parameters from [3] are not suitable to obtain both estimate simultaneously. So
here we provide modified choices and verify the needed estimates for them, still
using the analysis of [3].

Proposition 3. Let r ∈ N0, d ∈ N. There are constants c1−6 > 0 such that the
following hold. For each n ∈ N there is a µ0(n) ∈M0 such that for all ω ∈ Ω

card
(
A1,r
µ0(n),ω

)
≤ c1n (28)

sup
f∈BC(Q×[0,1])

‖S1f − A1,r
µ0(n),ωf‖C(Q×[0,1]) ≤ c2 (29)

sup
f∈BCr(Q×[0,1])

‖S1f − A1,r
µ0(n),ωf‖C(Q×[0,1]) ≤ c3n

− r
d+1 . (30)

Moreover, for each n ∈ N there is a µ(n) ∈M such that

max
ω∈Ω

card
(
A1,r
µ(n),ω

)
≤ c4n (31)

sup
f∈BC(Q×[0,1])

(
E ‖S1f − A1,r

µ(n),ωf‖
2
C(Q×[0,1])

)1/2

≤ c5 (32)

sup
f∈BCr(Q×[0,1])

(
E ‖S1f − A1,r

µ(n),ωf‖
2
C(Q×[0,1])

)1/2

≤ c6n
−γ1(log(n+ 1))γ2 (33)
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with

γ1 =

{
r+1/2
d+1

if r
d
> 1

2
r
d

if r
d
≤ 1

2

γ2 =


1
2

if r
d
> 1

2

2 if r
d

= 1
2

r
d

if r
d
< 1

2
.

(34)

Proof. Let n ∈ N, put

l∗ =

⌈
log2(n+ 1)

d

⌉
, l0 =

⌊
d

d+ 1
l∗
⌋
, nl0 = 2d(l∗−l0) (35)

and µ0(n) = (l0, l0, nl0). For this choice relations (28) and (30) were shown in [3].
Relation (29) readily follows from (3), (7) of Proposition 1, and (27).

To prove (31–34), let µ(n) =
(
l0, l1, (nl0)

l1
l=l0

)
∈ M , with l0 and nl0 given by

(35), and l1, (nl0)
l1
l=l0+1 to be fixed later on. For brevity we denote for % ∈ N0,

E%(µ(n)) := sup
f∈BC%(Q×[0,1])

(
E ‖S1f − A1,r

µ(n),ωf‖
2
C(Q×[0,1])

)1/2

.

We show that for % ∈ {0, r}

E%(µ(n)) ≤ c2−%l1 + c(l0 + 1)1/2n
−%−1/2
l0

+ c

l1∑
l=l0+1

(l + 1)1/22−%ln
−1/2
l . (36)

By (63) in [3], this holds for % = r. It remains to prove the corresponding estimate
for r ≥ 1, % = 0. By (12) and (21)

Xl = P r1,d
2l

(C(Q)), (37)

therefore Xl−1 ⊆ Xl and, by (13), also Xl−1,l ⊆ Xl for l ≥ 1. As shown in [3],

τ2(Xl−1,l) ≤ τ2(Xl) ≤ c(l + 1)1/2. (38)

We conclude from (14) of Proposition 2, (22), and (38) that

E0(µ(n)) ≤ c+ c(l0 + 1)1/2n
−1/2
l0

+ c

l1∑
l=l0+1

(l + 1)1/2n
−1/2
l , (39)

which shows (36) for % = 0.
From (35) we conclude

d(l∗ − l0) ≥ dl∗

d+ 1
≥ l0,

thus,
n
−%−1/2
l0

= 2−(%+1/2)d(l∗−l0) ≤ 2−%l0−d(l∗−l0)/2 = 2−%l0n
−1/2
l0

.

8



This means that we can include the middle term in (36) into the sum, which gives

E%(µ(n)) ≤ c2−%l1 + c

l1∑
l=l0

(l + 1)1/22−%ln
−1/2
l (% ∈ {0, r}). (40)

If r > d/2, we set

γ =
(r + 1/2)d

r(d+ 1)
, l1 = dγl∗e .

Then
d

d+ 1
< γ < 1.

Indeed, the left hand inequality is obvious, while the right-hand inequality is a
consequence of the assumption r > d/2. With (35) it follows that

l0 ≤ l1 ≤ l∗.

We choose a δ > 0 in such a way that

r − δ/2 > d/2, (41)

δ

(
γ − d

d+ 1

)
< d(1− γ) (42)

and put

nl =
⌈
2d(l∗−l)−δ(l−l0)

⌉
(l = l0 + 1, . . . , l1).

From (40–42) and (35) we obtain

Er(µ(n)) ≤ c2−rl1 + c(l∗ + 1)1/2

l1∑
l=l0

2−rl0−(r−δ/2)(l−l0)−d(l∗−l)/2

≤ c2−
(r+1/2)d
d+1

l∗ + c(l∗ + 1)1/22−rl0−d(l∗−l0)/2

≤ c(l∗ + 1)1/22−
(r+1/2)d
d+1

l∗ ≤ cn−
r+1/2
d+1 (log(n+ 1))1/2.

Furthermore, using (40) and (42),

E0(µ(n)) ≤ c+ c(l∗ + 1)1/2

l1∑
l=l0

2δ(l−l0)/2−d(l∗−l)/2

≤ c+ c(l∗ + 1)1/22δ(l1−l0)/2−d(l∗−l1)/2

≤ c+ c(l∗ + 1)1/22δ(γ−
d
d+1) l

∗
2
−d(1−γ) l

∗
2 ≤ c.

By (24) the number of function values fulfills

card
(
A1,r
µ(n),ω

)
≤ c

l1∑
l=l0

nl2
dl ≤ c2dl1 + c

l1∑
l=l0

2dl
∗−δ(l−l0) ≤ cn. (43)
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This proves (31–34) for r > d/2.
If r = d/2, we set l1 = l∗, put

nl = max
(
2d(l∗−l),

⌈
(l∗ + 1)2d(l∗−l)/2⌉) (l = l0 + 1, . . . , l1)

and get from (35) and (40),

Er(µ(n)) ≤ c2−rl
∗

+ c(l∗ + 1)1/2

l∗∑
l=l0

2−rl−d(l∗−l)/2

≤ c(l∗ + 1)3/22−dl
∗/2 ≤ cn−1/2(log(n+ 1))3/2, (44)

E0(µ(n)) ≤ c+ c(l∗ + 1)1/2

l1∑
l=l0

n
−1/2
l ≤ c+ c

l∗∑
l=l0

2−d(l∗−l)/4 ≤ c. (45)

The cardinality satisfies

card
(
A1,r
µ(n),ω

)
≤ c

l∗∑
l=l0

nl2
dl ≤ c2dl

∗
+ c

l∗∑
l=l0

(
2dl

∗
+ (l∗ + 1)2d(l∗+l)/2

)
≤ c(l∗ + 1)2dl

∗ ≤ cn log(n+ 1). (46)

Transforming n log(n+ 1) into n in relations (44–46) proves (31–34) for this case.
Finally, if r < d/2, we set

l1 = l∗ −
⌈
d−1 log2(l∗ + 1)

⌉
, (47)

choose a δ > 0 in such a way that

(d− δ)/2 > r (48)

and put
nl =

⌈
2d(l∗−l)−δ(l1−l)

⌉
(l = l0 + 1, . . . , l1). (49)

This is the same choice as in the respective case of the proof of Proposition 4 in
[3]. Clearly, there is a constant c > 0 such that l0 ≤ l1 for n ≥ c. For n < c
the statements (32) and (33) are trivial. It was shown in [3] that with the choice
above card

(
A1,r
µ(n),ω

)
≤ cn and that relation (33) holds. Arguing similarly, we

derive from (35), (36), (47), and (49) for the case % = 0

E0(µ(n)) ≤ c+ c(l∗ + 1)1/22−d(l∗−l0)/2

+c(l∗ + 1)1/2

l1∑
l=l0+1

2−d(l∗−l1)/2−(d−δ)(l1−l)/2

≤ c+ c(l∗ + 1)1/22−d(l∗−l1)/2

≤ c+ c(l∗ + 1)1/22−(log2(l∗+1))/2 ≤ c,

which is (32).
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5 Fixed Point Iteration for Parametric ODEs

Here we apply the above results to the following problem. Let d, q ∈ N, r ∈ N0,
Q = [0, 1]d, and let Cr

Lip(Q× [0, 1]×Rq,Rq) be the space of functions f ∈ Cr(Q×
[0, 1]× Rq,Rq) satisfying for s ∈ Q, t ∈ [0, 1], z1, z2 ∈ Rq

|f |Lip := sup
s∈Q,t∈[0,1],z1 6=z2∈Rq

‖f(s, t, z1)− f(s, t, z2)‖Rq
‖z1 − z2‖Rq

<∞. (50)

The space Cr
Lip(Q× [0, 1]× Rq,Rq) is endowed with the norm

‖f‖CrLip(Q×[0,1]×Rq ,Rq) = max
(
‖f‖Cr(Q×[0,1]×Rq ,Rq), |f |Lip

)
. (51)

If r = 0, we also write CLip(Q × [0, 1] × Rq,Rq). We consider the numerical
solution of initial value problems for systems of ODEs depending on a parameter
s ∈ Q

∂u(s, t)

∂t
= f(s, t, u(s, t)) (s ∈ Q, t ∈ [0, 1]) (52)

u(s, 0) = u0(s) (s ∈ Q) (53)

with f ∈ CLip(Q×[0, 1]×Rq,Rq) and u0 ∈ C(Q,Rq). A function u : Q×[0, 1]→ Rq

is called a solution if for each s ∈ Q, u(s, t) is continuously differentiable as a
function of t and (52–53) are satisfied. Due to the assumptions on f and u0

the solution exists, is unique, and belongs to C(Q × [0, 1],Rq). Let the solution
operator

S2 : CLip(Q× [0, 1]× Rq,Rq)× C(Q,Rq)→ C(Q× [0, 1],Rq)

be given by S2(f, u0) = u, where u = u(s, t) is the solution of (52–53). Further-
more, fix κ > 0 and let

F r
2 (κ) = κBCrLip(Q×[0,1]×Rq ,Rq) × κBCr(Q,Rq). (54)

Classical results on the regularity with respect to t and the parameter s (see, e.g.,
[23]) give

sup
(f,u0)∈F r2 (κ)

‖S2(f, u0)‖Cr(Q×[0,1],Rq) ≤ c. (55)

Now let f ∈ CLip(Q× [0, 1]×Rq,Rq) and u0 ∈ C(Q,Rq). We rewrite (52–53)
in the equivalent form

u(s, t) = u0(s) +

∫ t

0

f(s, τ, u(s, τ))dτ (s ∈ Q, t ∈ [0, 1]). (56)

Let m ∈ N and ti = im−1 (i = 0, . . . ,m). We solve (56) and thus (52–53) in
m steps on the intervals [ti, ti+1] (i = 0, . . . ,m− 1). Let

S1,i : C(Q× [ti, ti+1],Rq)→ C(Q× [ti, ti+1],Rq)
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be the q-dimensional version of the solution operator of parametric indefinite
integration on [ti, ti+1], i.e., for g ∈ C(Q× [ti, ti+1],Rq)

(
S1,ig

)
(s, t) =

(∫ t

ti

gl(s, τ)dτ

)q

l=1

(t ∈ [ti, ti+1]), (57)

where gl are the components of g. Let A1,r
µ,i,ω be algorithm A1,r

µ,ω from (23), scaled
to [ti, ti+1] and applied to each component of g, that is(

A1,r
µ,i,ωg

)
(s, t) =

(
m−1

(
A1,r
µ,ωg

∗
l

)
(s,m(t− ti))

)q
l=1

(t ∈ [ti, ti+1]), (58)

with
g∗l (s, τ) = gl(s, ti +m−1τ) (τ ∈ [0, 1]). (59)

Let

N =
{(
m,M, k, (µj)

k−1
j=0

)
: m,M, k ∈ N, (µj)

k−1
j=0 ⊂M

}
(60)

N0 =
{(
m,M, k, (µj)

k−1
j=0

)
∈ N : (µj)

k−1
j=0 ⊂M0

}
⊂ N , (61)

where M and M0 were defined in (10) and (26), respectively, and let r1 =
max(r, 1). For ν =

(
m,M, k, (µj)

k−1
j=0

)
∈ N define u0,0 = P r1,d

M u0 and for i =
0, . . . ,m− 1, j = 0, . . . , k − 1, s ∈ Q the iteration

ui,j+1(s, t) = ui,0(s) + (A1,r
µj ,i,ω

gij)(s, t) (t ∈ [ti, ti+1]), (62)

where
gij(s, t) = f(s, t, uij(s, t)) (t ∈ [ti, ti+1]), (63)

and
ui+1,0(s) = uik(s, ti+1) (t ∈ [ti+1, ti+2], i ≤ m− 2). (64)

We assume that the involved random variables (A1,r
µj ,i,ω

)m−1,k−1
i,j=0 are independent.

Furthermore, for s ∈ Q, t ∈ [0, 1] put

uν(s, t) =

{
uik(s, t) if t ∈ [ti, ti+1), i ≤ m− 2
um−1,k(s, t) if t ∈ [tm−1, tm]

(65)

A2,r
ν,ω(f, u0) = uν . (66)

Clearly, uij ∈ C(Q× [ti, ti+1],Rq). Moreover, it follows from (58) and (25) that

(A1,r
µj ,i,ω

gij)(s, ti) = 0,

and therefore (62) yields

uik(s, ti) = ui,0(s) = ui−1,k(s, ti) (1 ≤ i ≤ m− 1, s ∈ Q),

hence v ∈ C(Q× [0, 1],Rq). Next we give error and stability estimates for A2,r
ν,ω.
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Proposition 4. Let r ∈ N0, d, q ∈ N, κ > 0. Then there are constants c1−6 > 0
such that the following hold. For each n ∈ N there is a ν0(n) ∈ N0 such that for
all ω ∈ Ω

card
(
A2,r
ν0(n),ω

)
≤ c1n (67)

sup
(f,u0)∈F r2 (κ)

‖S2(f, u0)− A2,r
ν0(n),ω(f, u0)‖C(Q×[0,1],Rq) ≤ c2n

− r
d+1 (68)

and for (f, u0), (f̃ , ũ0) ∈ F 0
2 (κ)

‖A2,r
ν0(n),ω(f, u0)− A2,r

ν0(n),ω(f̃ , ũ0)‖C(Q×[0,1],Rq)

≤ c3

(
‖f − f̃‖C(Q×[0,1]×Rq ,Rq) + ‖u0 − ũ0‖C(Q,Rq)

)
. (69)

Moreover, for each n ∈ N there is a ν(n) ∈ N such that

max
ω∈Ω

card
(
A2,r
ν(n),ω

)
≤ c4n, (70)

sup
(f,u0)∈F r2 (κ)

(
E ‖S2(f, u0)− A2,r

ν(n),ω(f, u0)‖2
C(Q×[0,1],Rq)

)1/2

≤ c5n
−γ1(log(n+ 1))γ2 , (71)

with γ1 and γ2 given by (34), and for (f, u0), (f̃ , ũ0) ∈ F 0
2 (κ)(

E ‖A2,r
ν(n),ω(f, u0)− A2,r

ν(n),ω(f̃ , ũ0)‖2
C(Q×[0,1],Rq)

)1/2

≤ c6

(
‖f − f̃‖C(Q×[0,1]×Rq ,Rq) + ‖u0 − ũ0‖C(Q,Rq)

)
. (72)

Proof. We prove (70–72), the proof of (67–69) is analogous, just simpler. For the
sake of brevity we set

ε(n) = n−γ1(log(n+ 1))γ2 . (73)

By Proposition 3 and (57–59) there are constants c, c(1), c(2) > 0 and a sequence
(µ(n))∞n=1 ⊂M such that for m,n ∈ N

max
ω∈Ω

card
(
A1,r
µ(n),i,ω

)
≤ cn, (74)

for f ∈ C(Q× [ti, ti+1],Rq)(
E ‖S1,if − A1,r

µ(n),i,ωf‖
2
C(Q×[ti,ti+1],Rq)

)1/2

≤ c(1)m−1‖f‖C(Q×[ti,ti+1],Rq) (75)

and for f ∈ Cr(Q× [ti, ti+1],Rq)(
E ‖S1,if − A1,r

µ(n),i,ωf‖
2
C(Q×[ti,ti+1],Rq)

)1/2

≤ c(2)m−1ε(n)‖f‖Cr(Q×[ti,ti+1],Rq). (76)
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In the rest of the proof we reserve the notation c(1) and c(2) for the constants in
(75) and (76). We need the following stability property, which is a consequence
of (75) and the linearity of Aµ(n),i,ω: For f1, f2 ∈ C(Q× [ti, ti+1],Rq)(

E ‖A1,r
µ(n),i,ωf1 − A1,r

µ(n),i,ωf2‖2
C(Q×[ti,ti+1],Rq)

)1/2

≤ ‖S1,i(f1 − f2)‖C(Q×[ti,ti+1],Rq)

+
(
E ‖S1,i(f1 − f2)− A1,r

µ(n),i,ω(f1 − f2)‖2
C(Q×[ti,ti+1],Rq)

)1/2

≤ (c(1) + 1)m−1‖f1 − f2‖C(Q×[ti,ti+1],Rq). (77)

We choose m ∈ N in such a way that

θ := (c(1) + 1)m−1κ ≤ 1/2. (78)

Now we fix n ∈ N and define

M =
⌈
n1/d

⌉
, k =

⌊
γ1 log2 n+ log2m

− log2 θ

⌋
+ 1, (79)

nj =
⌈
nθ

k−1−j
γ1+1

⌉
(j = 0, . . . , k − 1), (80)

and set
ν(n) =

(
m,M, k, µ(nj)

k−1
j=0

)
.

Then the cardinality of algorithm A2,r
ν(n),ω satisfies

card
(
A2,r
ν(n),ω

)
≤ cMd + cm

k−1∑
j=0

nj ≤ cn+ cm
k−1∑
j=0

⌈
nθ

k−1−j
γ1+1

⌉
≤ cn

(note that by the choice (78), m is just a constant). This shows (70).
Next we prove the error estimate (71). Let (f, u0) ∈ F r

2 (κ). By (3) and (34)

‖u( · , 0)− u0,0‖C(Q,Rq) =
∥∥u0 − P r1,d

M u0

∥∥
C(Q,Rq) ≤ cn−r/d ≤ cn−γ1 . (81)

Setting
g(s, t) = f(s, t, u(s, t)), (82)

we get from (55)
‖g‖Cr(Q×[0,1],Rq) ≤ c. (83)

Moreover, (63) implies

‖g − gij‖C(Q×[ti,ti+1],Rq) ≤ κ‖u− uij‖C(Q×[ti,ti+1],Rq). (84)

We have
u(s, t) = u(s, ti) + (S1,ig)(s, t) (s ∈ Q, t ∈ [ti, ti+1]).
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We estimate, using (83), (84), (76), and (77)(
E ‖u− ui,j+1‖2

C(Q×[ti,ti+1],Rq)

)1/2

≤
(
E
∥∥∥u( · , ti) + S1,ig − ui,0 − A1,r

µ(nj),i,ω
gij

∥∥∥2

C(Q×[ti,ti+1],Rq)

)1/2

≤
(
E ‖u( · , ti)− ui,0‖2

C(Q,Rq)
)1/2

+

(
E
∥∥∥S1,ig − A1,r

µ(nj),i,ω
g
∥∥∥2

C(Q×[ti,ti+1],Rq)

)1/2

+

(
EE

(∥∥∥A1,r
µ(nj),i,ω

g − A1,r
µ(nj),i,ω

gij

∥∥∥2

C(Q×[ti,ti+1],Rq)

∣∣∣uij))1/2

≤
(
E ‖u( · , ti)− ui,0‖2

C(Q,Rq)
)1/2

+

(
E
∥∥∥S1,ig − A1,r

µ(nj),i,ω
g
∥∥∥2

C(Q×[ti,ti+1],Rq)

)1/2

+(c(1) + 1)m−1
(
E ‖g − gij‖2

C(Q×[ti,ti+1],Rq)

)1/2

≤
(
E ‖u( · , ti)− ui,0‖2

C(Q,Rq)
)1/2

+ c(1)m−1ε(nj)

+θ
(
E ‖u− uij‖2

C(Q×[ti,ti+1],Rq)

)1/2

. (85)

We get from (85) by recursion over j(
E ‖u− uik‖2

C(Q×[ti,ti+1],Rq)

)1/2

≤
(
E ‖u( · , ti)− ui,0‖2

C(Q,Rq)
)1/2

k−1∑
j=0

θj + c(1)m−1

k−1∑
j=0

θjε(nk−j−1)

+θk
(
E ‖u− ui,0‖2

C(Q×[ti,ti+1],Rq)

)1/2

≤ θk ‖u− u( · , ti)‖C(Q×[ti,ti+1],Rq) +
(
E ‖u( · , ti)− ui,0‖2

C(Q,Rq)
)1/2

k∑
j=0

θj

+c(1)m−1

k−1∑
j=0

θjε(nk−j−1). (86)

By (55) and (79),

θk ‖u− u( · , ti)‖C(Q×[ti,ti+1],Rq) ≤ cθk ≤ cm−1n−γ1 . (87)

Moreover, (78) implies

k∑
j=0

θj =

(
1 + θ

1− θk

1− θ

)
≤ 1 + 2θ. (88)
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Finally, using (80) and (73), we obtain

k−1∑
j=0

θjε(nk−j−1) =
k−1∑
j=0

θjn−γ1k−j−1(log(nk−j−1 + 1))γ2

≤
k−1∑
j=0

θjn−γ1θ
− γ1j
γ1+1 (log(n+ 1))γ2

= n−γ1 log(n+ 1))γ2
k−1∑
j=0

θ
j

γ1+1 ≤ cn−γ1 log(n+ 1))γ2 . (89)

Combining (86–89), we conclude(
E ‖u− uik‖2

C(Q×[ti,ti+1],Rq)

)1/2

≤ cm−1n−γ1(log(n+ 1))γ2 + (1 + 2θ)
(
E ‖u( · , ti)− ui,0‖2

C(Q,Rq)
)1/2

. (90)

In particular, taking into account (64), (78), and (81), we obtain by recursion
over i,(

E ‖u( · , ti+1)− ui+1,0‖2
C(Q,Rq)

)1/2

≤ cm−1n−γ1(log(n+ 1))γ2
i∑
l=0

(1 + 2θ)l + (1 + 2θ)i+1‖u( · , 0)− u0,0‖C(Q,Rq)

≤ c(1 + 2θ)mn−γ1(log(n+ 1))γ2 ≤ cn−γ1(log(n+ 1))γ2 .

Inserting this into (90), we get(
E ‖u− uik‖2

C(Q×[ti,ti+1],Rq)

)1/2

≤ cn−γ1(log(n+ 1))γ2

and hence,(
E ‖u− A2,r

ν(n),ω(f, u0)‖2
C(Q×[0,1],Rq)

)1/2

=
(
E ‖u− uν(n)‖2

C(Q×[0,1],Rq)
)1/2 ≤ cmn−γ1(log(n+ 1))γ2 ≤ cn−γ1(log(n+ 1))γ2 ,

which is (71).
Finally we prove the stability (72) of algorithm A2,r

ν(n),ω. Let (f, u0), (f̃ , ũ0) ∈
F 0

2 (κ), let ũij and g̃ij be defined analogously to (62–64) and set

g∗ij(s, t) = f(s, t, ũij(s, t)) (s ∈ Q, t ∈ [ti, ti+1]). (91)
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From (62) we get(
E ‖ui,j+1 − ũi,j+1‖2

C(Q×[ti,ti+1],Rq)

)1/2

≤
(
E ‖ui,0 − ũi,0‖2

C(Q,Rq)
)1/2

+

(
E
∥∥∥A1,r

µ(nj),i,ω
gij − A1,r

µ(nj),i,ω
g∗ij

∥∥∥2

C(Q×[ti,ti+1],Rq)

)1/2

+

(
E
∥∥∥A1,r

µ(nj),i,ω
g∗ij − A

1,r
µ(nj),i,ω

g̃ij

∥∥∥2

C(Q×[ti,ti+1],Rq)

)1/2

. (92)

We have by (82) and (91)

gij(s, t)− g∗ij(s, t) = f(s, t, uij(s, t))− f(s, t, ũij(s, t)),

hence
‖gij − g∗ij‖C(Q×[ti,ti+1],Rq) ≤ κ‖uij − ũij‖C(Q×[ti,ti+1],Rq).

It follows from (77) that(
E
∥∥∥A1,r

µ(nj),i,ω
gij − A1,r

µ(nj),i,ω
g∗ij

∥∥∥2

C(Q×[ti,ti+1],Rq)

)1/2

=

(
EE

(∥∥∥A1,r
µ(nj),i,ω

gij − A1,r
µ(nj),i,ω

g∗ij

∥∥∥2

C(Q×[ti,ti+1],Rq)

∣∣∣(uij, ũij)))1/2

≤ (c(1) + 1)m−1
(
E ‖gij − g∗ij‖2

C(Q×[ti,ti+1],Rq)

)1/2

≤ (c(1) + 1)m−1κ
(
E ‖uij − ũij‖2

C(Q×[ti,ti+1],Rq)

)1/2

. (93)

Similarly,

g∗ij(s, t)− g̃ij(s, t) = f(s, t, ũij(s, t))− f̃(s, t, ũij(s, t)),

which yields

‖g∗ij − g̃ij‖C(Q×[ti,ti+1],Rq) ≤ ‖f − f̃‖C(Q×[0,1]×Rq ,Rq).

Using again (77), we conclude(
E
∥∥∥A1,r

µ(nj),i,ω
g∗ij − A

1,r
µ(nj),i,ω

g̃ij

∥∥∥2

C(Q×[ti,ti+1],Rq)

)1/2

=

(
EE

(∥∥∥A1,r
µ(nj),i,ω

g∗ij − A
1,r
µ(nj),i,ω

g̃ij

∥∥∥2

C(Q×[ti,ti+1],Rq)

∣∣∣ũij))1/2

≤ (c(1) + 1)m−1
(
E ‖g∗ij − g̃ij‖2

C(Q×[ti,ti+1],Rq)

)1/2

≤ (c(1) + 1)m−1‖f − f̃‖C(Q×[0,1]×Rq ,Rq). (94)
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Combining (78), and (92–94), we obtain(
E ‖ui,j+1 − ũi,j+1‖2

C(Q×[ti,ti+1],Rq)

)1/2

≤
(
E ‖ui,0 − ũi,0‖2

C(Q,Rq)
)1/2

+ (c(1) + 1)m−1‖f − f̃‖C(Q×[0,1]×Rq ,Rq)

+θ
(
E ‖uij − ũij‖2

C(Q×[ti,ti+1],Rq)

)1/2

.

Recursion over j together with (88) gives(
E ‖uik − ũik‖2

C(Q×[ti,ti+1],Rq)

)1/2

≤
((

E ‖ui,0 − ũi,0‖2
C(Q,Rq)

)1/2
+ (c(1) + 1)m−1‖f − f̃‖C(Q×[0,1]×Rq ,Rq)

)
×(1 + θ + · · ·+ θk−1) + θk

(
E ‖ui,0 − ũi,0‖2

C(Q,Rq)

)1/2

≤ (1 + 2θ)(c(1) + 1)m−1‖f − f̃‖C(Q×[0,1]×Rq ,Rq)

+(1 + 2θ)
(
E ‖ui,0 − ũi,0‖2

C(Q,Rq)

)1/2

. (95)

Consequently, recalling (64) and using recursion over i, we obtain(
E ‖ui+1,0 − ũi+1,0‖2

C(Q,Rq)

)1/2

≤ (1 + 2θ)(c(1) + 1)m−1‖f − f̃‖C(Q×[0,1]×Rq ,Rq)

+(1 + 2θ)
(
E ‖ui,0 − ũi,0‖2

C(Q,Rq)

)1/2

≤ (1 + 2θ + (1 + 2θ)2 + · · ·+ (1 + 2θ)i+1)(c(1) + 1)m−1

×‖f − f̃‖C(Q×[0,1]×Rq ,Rq) + (1 + 2θ)i+1‖u0 − ũ0‖C(Q,Rq)

≤ c(‖f − f̃‖C(Q×[0,1]×Rq ,Rq) + ‖u0 − ũ0‖C(Q,Rq)).

Combining this with (95) yields(
E ‖uik − ũik‖2

C(Q×[ti,ti+1],Rq)

)1/2

≤ c(‖f − f̃‖C(Q×[0,1]×Rq ,Rq) + ‖u0 − ũ0‖C(Q,Rq)),

and finally (
E ‖A2,r

ν(n),ω(f, u0)− A2,r
ν(n),ω(f̃ , ũ0)‖2

C(Q×[0,1],Rq)

)1/2

≤ c(‖f − f̃‖C(Q×[0,1]×Rq ,Rq) + ‖u0 − ũ0‖C(Q,Rq)).

Now we will work in the setting of information-based complexity theory (IBC),
see [24, 22]. For the precise notions used here we also refer to [10, 11]. An abstract
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numerical problem is described by a tuple (F,G, S,K,Λ), with F an arbbitrary
set – the set of input data, G a normed linear space and S : F → G an arbitrary
mapping, the solution operator, which maps the input f ∈ F to the exact solution
Sf . Furthermore, K is an arbitrary set and Λ is a set of mappings from F to K
– the class of admissible information functionals.

The cardinality of an algorithm A, denoted by card(A), is the number of infor-
mation functionals used in A. Let edet

n (S, F,G), respectively eran
n (S, F,G), denote

the n-th minimal error in the deterministic, respectively randomized setting, that
is, the minimal possible error among all deterministic, respectively randomized
algorithms of cardinality at most n. The cardinality of an algorithm A is closely
related to the arithmetic cost, that is, the number of arithmetic operations needed
to carry out A. For many concrete algorithms, including all those considered here,
the arithmetic cost is within a constant or a logarithmic factor of card(A).

To put the parametric ODE problem into the setting above, let

S = S2, F = F r
2 (κ), G = C(Q× [0, 1],Rq), K = Rq,

and let Λ2 be the following class of function values

Λ2 = {δs,t,z : s ∈ Q, t ∈ [0, 1], z ∈ Rq} ∪ {δs : s ∈ Q},

where δs,t,z(f, u0) = f(s, t, z) and δs(f, u0) = u0(s).
The following theorem extends a result on the complexity of parametric ODEs

from [4]. There the Lipschitz condition was imposed on f and on certain deriva-
tives of f up to order r, here the Lipschitz condition is required for f alone. This
is also of importance for the applications to PDEs in the next section.

Theorem 1. Let r ∈ N0, d, q ∈ N, κ > 0. Then the deterministic n-th minimal
errors satisfy

edet
n (S2, F

r
2 (κ), C(Q× [0, 1],Rq)) � n−

r
d+1 .

For the randomized n-th minimal errors we have the following: If r/d > 1/2, then

eran
n (S2, F

r
2 (κ), C(Q× [0, 1],Rq)) � n−

r+1/2
d+1 (log n)

1
2 ,

if r/d = 1/2, then

n−
1
2 (log n)

1
2 � eran

n (S2, F
r
2 (κ), C(Q× [0, 1],Rq)) � n−

1
2 (log n)2,

and if r/d < 1/2, then

eran
n (S2, F

r
2 (κ), C(Q× [0, 1],Rq)) � n−

r
d (log n)

r
d .

Proof. Proposition 4 gives the upper bounds. To prove the lower bounds, we let
u0 ≡ 0 and consider functions f = f(s, t) not depending on z. In this sense we
have κBCr(Q×[0,1],Rq) ⊂ F r

2 (κ) and for f ∈ κBCr(Q×[0,1],Rq)

(S2(0, f))(s, 1) =

∫ 1

0

f(s, t)dt (s ∈ Q).
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This means that parametric definite integration of Cr(Q × [0, 1],Rq) functions
reduces to S2, so that the required lower bounds for parametric ODEs follow
from [14].

6 Almost Linear First Order PDEs

Let d, r ∈ N (note that throughout this section we assume r ≥ 1), Q = [0, 1]d,
and κ > 0. Given

(f, g, u0) ∈ F r
3 (κ) := κBCr([0,1]×Rd,Rd) × κBCr([0,1]×Rd×R) × κBCr(Rd), (96)

f = (f1, . . . , fd), we consider the following scalar first order almost linear PDE

∂u(t, x)

∂t
+

d∑
i=1

fi(t, x)
∂u(t, x)

∂xi
= g(t, x, u(t, x)) (x ∈ Rd, t ∈ [0, 1]), (97)

u(0, x) = u0(x). (98)

A solution is a continuously differentiable function u : [0, 1]× Rd → R satisfying
(97–98). Due to the definition of F r

3 (κ), the solution exists and is unique, see,
e.g., [23], as well as the discussion of the relations to ODEs below. We seek to
determine the solution at time t = 1 on Q, thus, we set G3 = C(Q) and define
the solution operator by

S3 : F r
3 (κ)→ C(Q), (S3(f, g, u0))(x) = u(1, x) (x ∈ Q).

Furthermore, we put K = Rd ∪ R and let Λ3 be the following class of function
values

Λ3 = {δt,x : t ∈ [0, 1], x ∈ Rd} ∪ {δt,x,z : t ∈ [0, 1], x ∈ Rd, z ∈ R} ∪ {δx : x ∈ Q},

where

δt,x(f, g, u0) = f(t, x), δt,x,z(f, g, u0) = g(t, x, z), δx(f, g, u0) = u0(x).

We use the method of characteristics. We want to find ξ : Q × [0, 1] → Rd

such that for s ∈ Q, t ∈ [0, 1],

∂ξ(s, t)

∂t
= f(t, ξ(s, t)) (99)

ξ(s, 1) = s. (100)

Observe that, due to (96) and the assumption r ≥ 1,

‖f‖CrLip(Q×[0,1]×Rd,Rd) ≤
√
dκ (101)
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(in the sense that f = f(t, z) is considered as a function not depending on s ∈ Q).
Thus, the solution of (99–100) exists and is unique. Denote

ξ0 : Q→ Rd, ξ0(s) = s (s ∈ Q).

Let
S̃2 : CLip(Q× [0, 1]× Rd,Rd)× C(Q,Rd)→ C(Q× [0, 1],Rd)

be the solution operator of parametric ODEs studied in Section 5, with the dif-
ference that the starting time is t = 1 and the ODE is considered backward in
time (clearly, this does not affect the error estimates of Proposition 5, provided
the algorithms are modified in the corresponding way). So we have

ξ = S̃2(f, ξ0).

Furthermore, ‖ξ0‖Cr(Q,Rd) =
√
d, and consequently, by (55) and (101), there is a

κ1 > 0 depending only on r, d and κ such that

‖ξ‖Cr(Q×[0,1],Rd) ≤ κ1. (102)

We define h ∈ CLip(Q× [0, 1]× R) and w0 ∈ C(Q) by setting

h(s, t, z) = g(t, ξ(s, t), z) (103)

w0(s) = u0(ξ(s, 0)) (104)

for s ∈ Q, t ∈ [0, 1], z ∈ R. By (96) and (102), there is a κ2 > 0 also depending
only on r, d and κ such that

(h,w0) ∈ F r
2 (κ2) ⊆ F 0

2 (κ2). (105)

Next we seek to find w : Q× [0, 1]→ R with

∂w(s, t)

∂t
= h(s, t, w(s, t)) (s ∈ Q, t ∈ [0, 1])

w(s, 0) = w0(s) (s ∈ Q).

Then we have
w = S2(h,w0), (106)

where
S2 : CLip(Q× [0, 1]× R)× C(Q)→ C(Q× [0, 1])

is the respective solution operator of parametric ODEs, here with q = 1 and
starting time t = 0. The following is well-known (see again, e.g., [23]).

Lemma 1. If u(t, x) is the solution of (97-98), then

u(t, ξ(s, t)) = w(s, t) (s ∈ Q, t ∈ [0, 1]). (107)
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It follows from (100) and (107) that

u(1, s) = w(s, 1) (s ∈ Q),

hence by (106)
S3(f, g, u0) = (S2(h,w0)) ( · , 1). (108)

Now let σ = (ν̃, ν) ∈ N 2, where N was defined in (60), and let Ã2,r
ν̃,ω be

the algorithm (62–66) for S̃2. Similarly, let A2,r
ν,ω be the respective algorithm for

S2. We assume that the random variables Ã2,r
ν̃,ω and A2,r

ν,ω are independent. Define

ξν̃ ∈ C(Q× [0, 1],Rd) by

ξν̃ = Ã2,r
ν̃,ω(f, ξ0) (109)

and hν̃ ∈ CLip(Q× [0, 1]× R), w0,ν̃ ∈ C(Q) by setting for s ∈ Q, t ∈ [0, 1], z ∈ R

hν̃(s, t, z) = g(t, ξν̃(s, t), z) (110)

w0,ν̃(s) = u0(ξν̃(s, 0)). (111)

It follows from (96) that

(hν̃ , w0,ν̃) ∈ F 0
2 (κ). (112)

We define algorithm A3,r
σ,ω for S3 by setting for s ∈ Q(

A3,r
σ,ω(f, g, u0)

)
(s) =

(
A2,r
ν,ω(hν̃ , w0,ν̃)

)
(s, 1). (113)

We have A3,r
σ,ω(f, g, u0) ∈ C(Q). The following result provides error estimates for

A3,r
σ,ω (recall also the definition (61) of N0).

Proposition 5. Let r, d ∈ N, κ > 0. There are constants c1−4 > 0 such that the
following hold. For each n ∈ N there is a σ0(n) ∈ N 2

0 such that for all ω ∈ Ω.

card
(
A3,r
σ0(n),ω

)
≤ c1n (114)

sup
(f,g,u0)∈F r3 (κ)

‖S3(f, g, u0)− A3,r
σ0(n),ω(f, g, u0)‖C(Q) ≤ c2n

− r
d+1 . (115)

Moreover, for each n ∈ N there is a σ(n) ∈ N 2 such that

sup
ω∈Ω

card
(
A3,r
σ(n),ω

)
≤ c3n (116)

sup
(f,g,u0)∈F r3 (κ)

(
E ‖S3(f, g, u0)− A3,r

σ(n),ω(f, g, u0)‖2
C(Q)

)1/2

≤ c4n
−γ1(log(n+ 1))γ2 , (117)

with γ1, γ2 given by (34).
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Proof. Again we only prove the stochastic case (116–117), the deterministic case
being analogous. Let (ν̃(n))∞n=1 be such that (70–72) of Proposition 4 hold for
S̃2. Similarly, let (ν(n))∞n=1 be a respective sequence for S2. We put σ(n) =
(ν̃(n), ν(n)). Now let n ∈ N, (f, g, u0) ∈ F r

3 (κ). By (71–72) of Proposition 4,
(105), (112), (113), and (108)(

E
∥∥∥S3(f, g, u0)− A3,r

σ(n),ω(f, g, u0)
∥∥∥2

C(Q)

)1/2

=

(
E
∥∥∥(S2(h,w0))( · , 1)−

(
A2,r
ν(n),ω(hν̃(n), w0,ν̃(n))

)
( · , 1)

∥∥∥2

C(Q)

)1/2

≤
(
E
∥∥∥S2(h,w0)− A2,r

ν(n),ω(hν̃(n), w0,ν̃(n))
∥∥∥2

C(Q×[0,1])

)1/2

≤
(
E
∥∥∥S2(h,w0)− A2,r

ν(n),ω(h,w0)
∥∥∥2

C(Q×[0,1])

)1/2

+

(
EE

∥∥∥A2,r
ν(n),ω(h,w0)− A2,r

ν(n),ω(hν̃(n), w0,ν̃(n))
∥∥∥2

C(Q×[0,1])

∣∣∣ξν̃(n)

)1/2

≤ cn−γ1(log(n+ 1))γ2 + c
(
E ‖h− hν̃(n)‖2

C(Q×[0,1]×R)

)1/2

+c
(
E ‖w0 − w0,ν̃(n)‖2

C(Q)

)1/2
. (118)

By (103), (110), and (96), for s ∈ Q, t ∈ [0, 1], z ∈ R

|h(s, t, z)− hν̃(n)(s, t, z)| = |g(t, ξ(s, t), z)− g(t, ξν̃(n)(s, t), z)|
≤
√
dκ‖ξ(s, t)− ξν̃(n)(s, t)‖Rd , (119)

and similarly, by (104), (111), and (96),

|w0(s)− w0,ν̃(n)(s)| = |u0(ξ(s, 0))− u0(ξν̃(n)(s, 0))|
≤
√
dκ‖ξ(s, 0)− ξν̃(n)(s, 0)‖Rd . (120)

Furthermore, using (101) and (71) of Proposition 4, we obtain(
E ‖ξ − ξν̃(n)‖2

C(Q×[0,1],Rd)

)1/2

=

(
E
∥∥∥S̃2(f, ξ0)− Ã2,r

ν̃(n),ω(f, ξ0)
∥∥∥2

C(Q×[0,1],Rd)

)1/2

≤ cn−γ1(log(n+ 1))γ2 . (121)

From (119–121) we conclude(
E ‖h− hν̃(n)‖2

C(Q×[0,1]×R)

)1/2 ≤ cn−γ1(log(n+ 1))γ2 (122)(
E ‖w0 − w0,ν̃(n)‖2

C(Q)

)1/2 ≤ cn−γ1(log(n+ 1))γ2 . (123)
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Combining (118) and (122–123), we obtain the desired result (117). Relation
(116) follows from the definition of A3,r

σ(n),ω and (70) of Proposition 4.

The following theorem gives the deterministic and randomized minimal errors
of the first order almost linear PDE problem.

Theorem 2. Let r, d ∈ N and κ > 0. Then in the deterministic setting,

edet
n (S3, F

r
3 (κ), C(Q)) � n−

r
d+1 .

In the randomized setting, if r/d > 1/2

eran
n (S3, F

r
3 (κ), C(Q)) � n−

r+1/2
d+1 (log n)

1
2 ,

if r/d = 1/2, then

n−
1
2 (log n)

1
2 � eran

n (S3, F
r
3 (κ), C(Q)) � n−

1
2 (log n)2,

and if r/d < 1/2, then

eran
n (S3, F

r
3 (κ), C(Q)) � n−

r
d (log n)

r
d .

Proof. The upper bounds follow from Proposition 5 above. To show the lower
bounds, we set f ≡ 0, u0 ≡ 0, and consider g = g(t, x) not depending on z. Let
Cr
Q([0, 1] × Rd) be the subspace of Cr([0, 1] × Rd) consisting of all functions g

satisfying
supp g(t, ·) ⊆ Q (t ∈ [0, 1]).

Then g ∈ κBCrQ([0,1]×Rd) implies (0, g, 0) ∈ F r
3 (κ). Moreover,

(S3(0, g, 0))(x) =

∫ 1

0

g(t, x)dt (x ∈ Q),

thus parametric definite integration of Cr
Q([0, 1] × Rd) functions reduces to S3,

and the lower bounds follow from [14] (it is readily seen from the proof in [14]
that the lower bound also holds for the subclass of functions with support in Q).

Note that to obtain this result it was crucial to have Proposition 4 and Theo-
rem 1 for parametric ODEs under the Lipschitz condition as imposed in definitions
(50), (51), and (54). If we wanted to apply the results of [4] to get the upper
bounds as stated in Theorem 2, we would have to ensure the stronger Lipschitz
condition from [4] (involving derivatives up to order r). This would mean to re-
quire (f, g, u0) ∈ F r+1

3 (κ), which, in turn, would lead to gaps between the upper
and lower bounds in Theorem 2 (in the lower bounds r would have to be replaced
by r + 1).
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