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Abstract

We study the complexity of pathwise approximation of parameter de-
pendent stochastic Itô integration for Cr functions, with r ∈ R, r > 0.
Both definite and indefinite integration are considered. This complements
previous results [2] for classes of functions with dominating mixed smooth-
ness. Upper bounds are obtained by embedding of function classes and
applying some generalizations of these previous results. The emphasis of
the present paper lies on lower bounds. While in [2] only nonadaptive
deterministic algorithms were considered, we prove here lower bounds for
adaptive deterministic and randomized algorithms, both for the classes
considered here as for those from [2].

1 Introduction

The complexity of stochastic integration of real-valued non-parametric functions
was investigated in [15], [8], [12], [13]. In [2] the complexity of definite and
indefinite stochastic Itô integration of parameter dependent random functions
was studied. Classes of functions with smoothness of dominating mixed type
Cr,% with integer degree of differentiability r were considered there. A multilevel
Euler-Maruyama scheme was developed and analyzed to obtain the upper bounds.
Moreover, matching lower bounds were shown in the deterministic nonadaptive
setting. The present paper extends and complements these results in a number
of respects.

First of all, we study standard isotropic Cr-smoothness. This allows to com-
pare the results with previous ones for (non-stochastic) parametric integration
obtained in [5], [3], [4], and also in [1]. However, we consider real-valued r, thus
differentiable functions which satisfy suitable Hölder conditions. We discuss the
extension of the results of [2] to fractional indices of smoothness. Then we de-
rive upper bounds for Cr classes by studying their embedding into suitable Cr1,%

classes and applying the algorithm and its analysis from [2].
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The main results of the present paper concern lower bounds. First an ab-
stract setting of algorithms and n-th minimal errors is introduced, which extends
respective approaches for deterministic problems. Then we prove lower bounds
for adaptive algorithms both in the deterministic and randomized setting match-
ing the upper bounds derived before (up to logarithmic factors, in general). We
present a new technique, which involves exponential inequalities. It is also shown
that the bounds obtained in [2] for nonadaptive deterministic algorithms hold
true for adaptive deterministic and randomized algorithms, as well.

The structure of the paper is as follows: Section 2 contains notation and some
preliminaries, including the needed function classes. In section 3 we recall the
multilevel Euler-Maruyama algorithm from [2] and derive error estimates. Section
4 is devoted to lower bounds.

2 Preliminaries

Let N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }. Let X, Y be Banach spaces. The unit
ball of X is denoted by BX , the dual space by X∗, the σ-algebra of Borel subsets of
X by B(X), and the space of bounded linear operators from Y to X by L (Y,X).
Let d ∈ N. The space of real-valued continuous functions on a compact set Q ⊂
Rd is denoted by C(Q) and is equipped with the supremum norm. Furthermore,
if Q is the closure of an open bounded set and k ∈ N, Ck(Q) denotes the space of
all functions which are k-times continuously differentiable in the interior of Q and
which together with their derivatives up to order k possess continuous extensions
to all ofQ. This space is equipped with the norm ‖f‖Ck(Q) = sup|α|≤k, s∈Q |Dαf(s)|
with α = (α1, . . . , αd) ∈ Nd

0 and |α| = |α1| + · · · + |αd|. If k = 0, we put
C0(Q) = C(Q). For r ∈ R, r > 0, r 6∈ N put k = brc, σ = r − k, and let Cr(Q)
be the space of all f ∈ Ck(Q) satisfying ‖f‖Cr(Q) <∞, where

‖f‖Cr(Q) := max

(
‖f‖Ck(Q),max

|α|≤k
sup

s1 6=s2∈Q
|s1 − s2|−σ |Dαf(s1)−Dαf(s2)|

)
,

and | · | denotes the Euclidean norm on Rd. For 1 ≤ p < ∞ and (M,M , µ) an
arbitrary measure space, Lp(M,M , µ,X), or shortly Lp(M,X), is the space of
Bochner p-integrable functions, equipped with the usual norm.

Throughout the paper the same symbol c, c1, c2, . . . may denote different con-
stants, even in a sequence of relations. Moreover, for nonnegative reals (an)n∈N
and (bn)n∈N we write an � bn if there are constants c > 0 and n0 ∈ N such that
for all n ≥ n0, an ≤ cbn. Furthermore, an � bn means that an � bn and bn � an.
Finally, an �log bn iff there are constants c > 0, n0 ∈ N, and θ ∈ R such that for
all n ≥ n0 an ≤ cbn(log(n+ 1))θ.

Let Q = [0, 1]d, k ∈ N, m ∈ N, and let Γk,dm =
{

i
km

: 0 ≤ i ≤ km
}d
. Let

P k,d
m ∈ L (C(Q)) be tensor product composite Lagrange interpolation of degree
k with respect to the partition of Q given by Γ1,d

m . Let r ∈ R, r > 0, and set
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k = dre. It is well-known that there are constants c0, c1 > 0 such that for all
m ∈ N

‖P k,d
m ‖L (C(Q)) ≤ c0, ‖J − P k,d

m J‖L (Cr(Q),C(Q)) ≤ c1m
−r, (1)

where J : Cr(Q)→ C(Q) is the embedding.
Let (Ω,Σ,P) be a probability space, (Σt)0≤t≤1, Σt ⊆ Σ a filtration, let

(W (t))0≤t≤1, W (t) = W (t, ω) (ω ∈ Ω) be a Wiener process on (Ω,Σ,P) adapted
to (Σt) and such that for 0 ≤ t1 ≤ t2 ≤ 1 the increments W (t2) − W (t1) are
independent of Σt1 . We assume that all trajectories of the Wiener process are
continuous.

Next we introduce the class of random functions which we will study here. Let
r ∈ R, r > 0, d ∈ N, Q = [0, 1]d, 2 ≤ q <∞ and let F r

q = F r
q (Q× [0, 1]× Ω;κ)

denote the set of all functions f : Q × [0, 1] × Ω → R such that for each s ∈
Q, f(s, t, ω) is progressively measurable, in other words, for each τ ∈ [0, 1] the
restriction f(s, · , · )|[0,τ ]×Ω is B([0, τ ])× Στ measurable,

f( · , · , ω) ∈ Cr(Q× [0, 1]) (ω ∈ Ω), (2)(
E ‖f( · , · , ω)‖qCr(Q×[0,1])

)1/q

≤ κ. (3)

We need to recall the definition of related classes in [2]. Let r1 ∈ R, r1 > 0,
0 ≤ % ≤ 1 and let F r1,% = F r1,%(Q × [0, 1] × Ω;κ) denote the set of all functions
f : Q × [0, 1] × Ω → R such that for each s ∈ Q, f(s, t, ω) is progressively
measurable and

f( · , t, ω) ∈ Cr1(Q) ((t, ω) ∈ [0, 1]× Ω), (4)(
E ‖f( · , 0, ω)‖2

Cr1 (Q)

)1/2

≤ κ, (5)(
E ‖f(· , t1, ω)− f(· , t2, ω)‖2

Cr1 (Q)

)1/2

≤ κ|t1 − t2|% (t1, t2 ∈ [0, 1]). (6)

Let F r1,%(Q × [0, 1] × Ω) = ∪κ>0F
r1,%(Q × [0, 1] × Ω;κ) be the respective linear

space. Moreover, for 2 < q <∞ let F r1,%
q = F r1,%

q (Q× [0, 1]×Ω;κ) be the subset
of those f ∈ F r1,%(Q× [0, 1]× Ω;κ) which fulfill(

E max
t∈M
‖f( · , t, ω)‖qCr1 (Q)

)1/q

≤ κ (M ⊂ [0, 1], |M | <∞). (7)

Let us consider the relation between the two types of function classes.

Lemma 1. Let r, r1 > 0, 0 ≤ % ≤ 1, r ≥ r1 + %, 2 < q < ∞. Then there are
constants c1, c2 > 0 such that

F r
2 (Q× [0, 1]× Ω;κ) ⊆ F r1,%(Q× [0, 1]× Ω; c1κ) (8)

F r
q (Q× [0, 1]× Ω;κ) ⊆ F r1,%

q (Q× [0, 1]× Ω; c2κ). (9)
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Proof. Let 2 ≤ q < ∞ and f ∈ F r
q (Q × [0, 1] × Ω;κ). Clearly, (4) follows from

(2), while (3) implies (5) and (7). It remains to show that (6) holds. We can
assume r = r1 + %. Let

r = k + σ, r1 = k1 + σ1 (k, k1 ∈ N0, 0 ≤ σ, σ1 < 1).

Fix ω ∈ Ω and set
κ(ω) = ‖f( · , · , ω)‖Cr(Q×[0,1]) .

Let s1, s2 ∈ Q, s1 6= s2, t1, t2 ∈ [0, 1], t1 6= t2, α ∈ Nd
0, |α| ≤ k1, and put

∆1(t1, t2, ω) := ‖f( · , t1, ω)− f( · , t2, ω)‖Ck1 (Q)

∆α
2 (s1, s2, t1, t2, ω) := |Dα

s f(s1, t1, ω)−Dα
s f(s1, t2, ω)

−Dα
s f(s2, t1, ω) +Dα

s f(s2, t2, ω)|.

First we assume σ1 + % = σ, thus k1 = k. Then, taking into account |t1− t2| ≤ 1,

∆1(t1, t2, ω) ≤ κ(ω)|t1 − t2|σ ≤ κ(ω)|t1 − t2|%. (10)

If |t1 − t2| ≥ |s1 − s2|, then

∆α
2 (s1, s2, t1, t2, ω) ≤ 2κ(ω)|s1 − s2|σ ≤ 2κ(ω)|s1 − s2|σ1|t1 − t2|%. (11)

Similarly, if |t1 − t2| < |s1 − s2|, then

∆α
2 (s1, s2, t1, t2, ω) ≤ 2κ(ω)|t1 − t2|σ ≤ 2κ(ω)|s1 − s2|σ1|t1 − t2|%. (12)

Now we assume σ1 + % = 1 + σ, hence k1 = k − 1. Here we have

∆1(t1, t2, ω) ≤ κ(ω)|t1 − t2| ≤ κ(ω)|t1 − t2|%. (13)

Let ei be the i-th unit vector in Rd. If |t1 − t2| ≥ |s1 − s2|, then

∆α
2 (s1, s2, t1, t2, ω)

=

∥∥∥∥∥
∫ 1

0

d∑
i=1

(
Dα+ei
s f(s2 + θ(s1 − s2), t1, ω)

−Dα+ei
s f(s2 + θ(s1 − s2), t2, ω)

)
(s1,i − s2,i)dθ

∥∥∥∥∥
Ck1 (Q)

≤
√
dκ(ω)|s1 − s2||t1 − t2|σ ≤

√
dκ(ω)|s1 − s2|σ1|t1 − t2|%. (14)

Similarly, if |t1 − t2| < |s1 − s2|, then

∆α
2 (s1, s2, t1, t2, ω)

=

∥∥∥∥∥
∫ 1

0

(
Dα,1
s,t f(s1, t2 + θ(t1 − t2), ω)

−Dα,1
s,t f(s2, t2 + θ(t1 − t2), ω)

)
(t1 − t2)dθ

∥∥∥∥∥
Ck1 (Q)

≤ κ(ω)|t1 − t2||s1 − s2|σ ≤ κ(ω)|s1 − s2|σ1 |t1 − t2|%. (15)
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It follows from (10–15) that(
E ‖f( · , t1, ω)− f( · , t2, ω)‖2

Cr1 (Q)

)1/2

=

(
E max

(
∆1(t1, t2, ω), max

|α|≤k1
sup

s1 6=s2∈Q

∆α
2 (s1, s2, t1, t2, ω)

|s1 − s2|σ1

)2
)1/2

≤ max(
√
d, 2)

(
Eκ(ω)2

)1/2 |t1 − t2|% ≤ max(
√
d, 2)κ|t1 − t2|%,

which shows (6).

Now we consider parametric indefinite stochastic integration∫ t

0

f(s, τ)dW (τ) (s ∈ Q, t ∈ [0, 1]).

This is a stochastic process indexed by Q× [0, 1]. It was shown in [2] (for r ∈ N,
but the argument is the same for real r > 0) that we can find a continuous version
in the sense that there is a mapping

Ŝ : F r,0(Q× [0, 1]× Ω)→ L2(Ω, C(Q× [0, 1]))

such that for s ∈ Q, t ∈ [0, 1]

(Ŝ (f))(s, t) =

∫ t

0

f(s, τ)dW (τ). (16)

It follows from the linearity of the stochastic integral (and a standard den-

sity/continuity argument) that the operator Ŝ is linear. For our purposes we
need a mapping

S : F r,0(Q× [0, 1]× Ω)× Ω→ C(Q× [0, 1]) (17)

such that S (f, · ) = Ŝ (f), with equality meant in L2(Ω, C(Q× [0, 1])), and S
is linear in f . Let (fi)i∈I , I a suitable index set, be a Hamel basis (that is, a basis
in the sense of linear spaces) of F r,0(Q× [0, 1]×Ω). For each i ∈ I let gi = gi(ω)

be a representative of the equivalence class Ŝ (fi) ∈ L2(Ω, C(Q × [0, 1])). Then
we set S (fi, ω) = gi(ω) for i ∈ I and ω ∈ Ω and extend the so-defined mapping

by linearity to all of F r,0(Q× [0, 1]× Ω). It follows from the linearity of Ŝ that
S is as required.

For parametric definite stochastic integration∫ 1

0

f(s, τ)dW (τ) (s ∈ Q)

we define

S1 : F r,0(Q× [0, 1]× Ω)× Ω→ C(Q)
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by setting

(S1(f, ω))(s) = (S (f, ω))(s, 1) (s ∈ Q,ω ∈ Ω). (18)

It follows that

S1(f, · ) ∈ L2(Ω, C(Q)) (19)

(S1(f, · ))(s) =

∫ 1

0

f(s, τ)dW (τ) (s ∈ Q), (20)

with equality (20) meant in L2(Ω). Due to Lemma 1, the operators S and S1

are also defined on the respective sets F r
q (Q× [0, 1]× Ω;κ).

3 An Algorithm for Parametric Stochastic Inte-

grals

First we recall the algorithm from [2]. Let n ∈ N, tk = k/n (k = 0, . . . , n), and
define An(f, ω) ∈ C([0, 1]) for any function f : [0, 1× Ω→ R and ω ∈ Ω by

An(f, ω) = P 1,1
n

(
k−1∑
j=0

f(tj, ω)(W (tj+1, ω)−W (tj, ω))

)n

k=0

.

This is the piecewise linear interpolation of the Euler-Maruyama scheme. Fur-
thermore, we set

An,1(f, ω) = (An(f, ω))(1) =
n−1∑
j=0

f(tj, ω)(W (tj+1, ω)−W (tj, ω)).

Next we pass to the multilevel scheme of [2]. Put k = dre, fix l1 ∈ N0, n0, . . . , nl1 ∈
N, let f : Q×[0, 1]×Ω→ R be any function and ω ∈ Ω. For the indefinite problem
we set

A (f, ω) =

l1∑
l=0

(
P k,d

2l
− P k,d

2l−1

)
(Anl

(fs, ω))s∈Γk,d

2l
,

where fs is given by fs(t, ω) := f(s, t, ω) (t ∈ [0, 1], ω ∈ Ω) and P2−1 := 0. In the
definite case we put

A1(f, ω) =

l1∑
l=0

(
P k,d

2l
− P k,d

2l−1

)
(Anl,1(fs, ω))s∈Γk,d

2l
.

Let card(A ) denote the number of evaluations of f and W used in algorithm A
(see Section 4 for a general definition). We have

card(A ) = card(A1) ≤ c

l1∑
l=0

nl2
dl.
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Now we use the analysis of this algorithm given in [2]. The following is
Theorem 5.3 of [2], which was shown there for r1 ∈ N. It is easily seen that it also
holds for real r1 > 0. Indeed, Lemma 5.1 and, using (1) above, Proposition 5.2
of [2] are readily extended to non-integer r1 > 0. The proof of Theorem 5.3 relies
only on Proposition 5.2 and does not use the assumption of r1 being integer.

Theorem 1. Let r1 ∈ R, r1 > 0, d ∈ N, 0 ≤ % ≤ 1, 2 < q < ∞. There are
constants c1−4 > 0 such that the following hold. For each n ∈ N with n ≥ 2 there
is a choice of l1 ∈ N0 and n0, . . . , nl1 ∈ N0 such that card(A1) ≤ c1n and

sup
f∈F r1,%(Q×[0,1]×Ω;κ)

(E ‖S1(f, ω)−A1(f, ω)‖2
C(Q))

1/2

≤ c2


n−r1/d(log n)1/2 if r1/d < %,

n−r1/d(log n)r1/d+3/2 if r1/d = %,

n−% if r1/d > %.

(21)

Similarly, for each n ∈ N with n ≥ 2 there are l1 ∈ N0 and n0, . . . , nl1 ∈ N0 such
that card(A ) ≤ c3n and

sup
f∈F r1,%

q (Q×[0,1]×Ω;κ)

(E ‖S (f, ω)−A (f, ω)‖2
C(Q×[0,1]))

1/2

≤ c4


n−r1/d(log n)1/2 if r1/d < min(%, 1/2)

n−r1/d(log n)r1/d+3/2 if r1/d = min(%, 1/2),

n−1/2(log n)1/2 if r1/d > min(%, 1/2), % ≥ 1/2,

n−% if r1/d > min(%, 1/2), % < 1/2.

(22)

On the basis of the considerations above we can now derive error estimates
for algorithms A1 and A on the classes F r

q (Q× [0, 1]× Ω;κ).

Theorem 2. Let r ∈ R, r > 0, d ∈ N, 2 < q < ∞, κ > 0. Then there are
constants c1−4 > 0 such that for each n ∈ N with n ≥ 2 there is a choice of
l1 ∈ N0 and n0, . . . , nl1 ∈ N0 such that card(A1) ≤ c1n and

sup
f∈F r

2 (Q×[0,1]×Ω;κ)

(E ‖S1(f, ω)−A1(f, ω)‖2
C(Q))

1/2

≤ c2

{
n−

r
d+1 (log n)

r
d+1

+ 3
2 if r

d+1
≤ 1,

n−1 if r
d+1

> 1.
(23)

Moreover, for each n ∈ N with n ≥ 2 there are l1 ∈ N0 and n0, . . . , nl1 ∈ N0 such
that card(A ) ≤ c3n and

sup
f∈F r

q (Q×[0,1]×Ω;κ)

(E ‖S (f, ω)−A (f, ω)‖2
C(Q×[0,1]))

1/2

≤ c4

{
n−

r
d+1 (log n)

r
d+1

+ 3
2 if r

d+1
≤ 1/2,

n−
1
2 (log n)

1
2 if r

d+1
> 1

2
.

(24)
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Proof. We define

r1 =
dr

d+ 1
, % = min

(
r

d+ 1
, 1

)
, (25)

hence r ≥ r1+% and the conclusions (8–9) of Lemma 1 hold. Denote the left-hand
side of (23) and (24) by E1 and E, respectively.

First we derive (23). If r
d+1
≤ 1, then r1

d
= %, thus (8) together with the

second relation of (21) yields

E1 ≤ cn−
r1
d (log n)

r1
d

+ 3
2 = cn−

r
d+1 (log n)

r
d+1

+ 3
2 ,

which is the first relation of (23). If r
d+1

> 1, we have by (25) r1
d
> % = 1, so the

third relation of (21) gives E1 ≤ cn−1 and thus the second part of (23).
Next we prove (24). If r

d+1
≤ 1

2
, we conclude from (25) r1

d
= % = min(%, 1/2),

so (9) together with the second relation of (22) implies

E ≤ cn−
r1
d (log n)

r1
d

+ 3
2 = cn−

r
d+1 (log n)

r
d+1

+ 3
2 ,

thus the first relation of (24). Finally, if r
d+1

> 1
2
, then by (25), % > 1/2, hence

r1
d
> min(%, 1/2), and the third relation of (22) implies

E ≤ cn−
1
2 (log n)

1
2 ,

showing the second relation of (24) and completing the proof.

4 Lower Bounds and Complexity

In this section we extend the approach of [6], [7] to stochastic problems. An
abstract stochastic numerical problem is described by a tuple

P = (F, (Ω,Σ,P), G, S,K,Λ). (26)

The set F is an arbitrary non-empty set, (Ω,Σ,P) a probability space, G is a
Banach space and S : F × Ω → G an arbitrary mapping, the solution operator,
which maps the input (f, ω) ∈ F to the exact solution S(f, ω). We assume
that for each f ∈ F the mapping ω → S(f, ω) is Σ-to-Borel-measurable and
P-almost surely separably valued, the latter meaning that for each f ∈ F there
is a separable subspace Gf of G such that

P{ω : S(f, ω) ∈ Gf} = 1.

Furthermore, K is a nonempty set and Λ a set of mappings from F × Ω to K,
the set of information functionals.
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A deterministic algorithm for P is a tuple A = ((Li)
∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0) such

that L1 ∈ Λ, τ0 ∈ {0, 1}, ϕ0 ∈ G, and for i ∈ N

Li+1 : Ki → Λ, τi : Ki → {0, 1}, ϕi : Ki → G

are arbitrary mappings. Given (f, ω) ∈ F × Ω, we associate with it a sequence
(ai)

∞
i=1 defined as follows:

a1 = L1(f, ω) (27)

ai =
(
Li(a1, . . . , ai−1)

)
(f, ω) (i ≥ 2). (28)

Define card(A, f, ω), the cardinality of A at input (f, ω), to be 0 if τ0 = 1. If
τ0 = 0, let card(A, f, ω) be the first integer n ∈ N with τn(a1, . . . , an) = 1, if
there is such an n. If no such n ∈ N exists, set card(A, f, ω) =∞. We define the
output A(f, ω) of algorithm A at input (f, ω) as

A(f, ω) =


ϕ0 if card(A, f, ω) = 0
ϕn(a1, . . . , an) if card(A, f, ω) = n <∞
ϕ0 if card(A, f, ω) =∞.

Given n ∈ N0, we define A det
n (P) as the set of those deterministic algorithms

A for P with the following properties: For each f ∈ F the mapping ω →
card(A, f, ω) is Σ-measurable, E card(A, f, ω) ≤ n, and the mapping ω → A(f, ω)
∈ G is Σ-to-Borel-measurable and P-almost surely separably valued. The cardi-
nality of A ∈ A det

n (P) is defined as

card(A) = sup
f∈F

E card(A, f, ω),

the error of A in approximating S as

e(S,A, F × Ω, G) = sup
f∈F

E ‖S(f, ω)− A(f, ω)‖G

and the deterministic n-th minimal error of S is defined for n ∈ N0 as

edet
n (S, F × Ω, G) = inf

A∈A det
n (P)

e(S,A, F × Ω, G).

It follows that no deterministic algorithm that uses (on the average with respect
to P) at most n information functionals can have a smaller error than edet

n (S, F ×
Ω, G).

A randomized algorithm for P is a tuple A = ((Ω1,Σ1,P1), (Aω1)ω1∈Ω1),
where (Ω1,Σ1,P1) is another probability space and for each ω1 ∈ Ω1, Aω1 is
a deterministic algorithm for P. Let (Ω1 × Ω,Σ1 × Σ,P1 × P) be the product
probability space. For n ∈ N0 we define A ran

n (P) as the class of those randomized
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algorithms A for P which possess the following properties: For each f ∈ F the
mapping (ω1, ω)→ card(Aω1 , f, ω) is Σ1 × Σ-measurable,

E P1×P card(Aω1 , f, ω) ≤ n,

and the mapping (ω1, ω)→ Aω1(f, ω) is Σ1×Σ-to-Borel-measurable and P1× P-
almost surely separably valued. We define the cardinality of A ∈ A ran

n (P) as

card(A) = sup
f∈F

E P1×P card(Aω1 , f, ω),

the error as

e(S,A, F × Ω, G) = sup
f∈F

E P1×P‖S(f, ω)− Aω1(f, ω)‖G

and the randomized n-th minimal error of S as

eran
n (S, F × Ω, G) = inf

A∈A ran
n (P)

e(S,A, F × Ω, G).

Similarly to the above, this means that no randomized algorithm that uses (on
the average with respect to P1 × P) at most n information functionals can have
a smaller error than eran

n (S, F × Ω, G). Deterministic algorithms can be viewed
as a special case of randomized ones, namely by considering trivial one-point
probability spaces Ω1 = {ω1}. Hence,

eran
n (S, F × Ω, G) ≤ edet

n (S, F × Ω, G). (29)

Now we study the complexity of definite and indefinite stochastic integration.
Let r, r1 > 0, 0 ≤ % ≤ 1, 2 < q <∞. We set K = R and

Λ = Λ1 ∪ Λ2, Λ1 = {δst : s ∈ Q, t ∈ [0, 1]}, Λ2 = {δt : t ∈ [0, 1]}, (30)

where δst(f, ω) = f(s, t, ω) and δt(f, ω) = W (t, ω) (f ∈ F, ω ∈ Ω). For definite
integration we choose F = F r

2 (Q× [0, 1]× Ω;κ) or F = F r1,%(Q× [0, 1]× Ω;κ),
G = C(Q), S = S1. For the indefinite problem we set F = F r

q (Q× [0, 1]×Ω;κ)
or F = F r1,%

q (Q× [0, 1]× Ω;κ), G = C(Q× [0, 1]), S = S .

Theorem 3. Let r, r1 ∈ R, r, r1 > 0, 0 ≤ % ≤ 1, d ∈ N, κ > 0, and 2 < q < ∞.
Then

eran
n (S1,F

r
2 × Ω, C(Q)) � max

(
n−

r
d+1 , n−1

)
(31)

eran
n (S1, F

r1,% × Ω, C(Q)) � max
(
n−

r1
d , n−%

)
. (32)

eran
n (S ,F r

q × Ω, C(Q× [0, 1]))) � max
(
n−

r
d+1 , n−

1
2 (log n)

1
2

)
(33)

eran
n (S , F r1,%

q × Ω, C(Q× [0, 1])) � max
(
n−

r1
d , n−

1
2 (log n)

1
2 , n−%

)
. (34)
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Theorems 1 and 2 show that, up to logarithmic factors, these bounds match
the upper bounds.

Corollary 1. Relations (31–34) also hold with � replaced by �log.

Moreover, by (29) and since the algorithms in Theorems 1 and 2 are deter-
ministic, the conclusions of Theorem 3 and Corollary 1 hold for edet

n in place of
eran
n , as well.

To prove Theorem 3 we need a number of auxiliary results. For this we return
to the general setting (26). The first observation concerns the case that F consists
of a single element, in other words, S is essentially independent of F and P is a
pure average case problem. Then the above inequality (29) has a certain converse.
This is a version of the well-known principle that, in general, for pure average
case problems randomized algorithms do not bring essential gains.

Lemma 2. If F = F0 = {f0}, then

eran
n (S, F0 × Ω, G) ≥ 1

2
edet

2n (S, F0 × Ω, G). (35)

Proof. Let δ > 0 and A ∈ A ran
n (P) with

e(S,A, F0 × Ω, G) ≤ eran
n (S, F0 × Ω, G) + δ.

This means

E P1×P‖S(f0, ω)− Aω1(f0, ω)‖G ≤ eran
n (S, F0 × Ω, G) + δ,

E P1×P card(Aω1 , f0, ω) ≤ n.

Consequently, setting

Ω1,1 = {ω1 : E P‖S(f0, ω)− Aω1(f0, ω)‖G ≤ 2eran
n (S, F0 × Ω, G) + 2δ},

Ω1,2 = {ω1 : E P card(Aω1 , f0, ω) ≤ 2n},

we conclude that P1(Ω1,1) > 1/2 and P1(Ω1,2) > 1/2. It follows that for ω1 ∈
Ω1,1 ∩ Ω1,2 6= ∅ we have Aω1 ∈ A det

2n (P) and

e(S,Aω1 , F0 × Ω, G) ≤ 2eran
n (S, F0 × Ω, G) + 2δ,

which implies (35).

Next we explore the connection between the original stochastic problem and
the deterministic problem we obtain by fixing the random input. For this purpose,
we assume that we are given a decomposition of the set Λ

Λ = ΛF ∪ ΛΩ, ΛF 6= ∅, ΛF ∩ ΛΩ = ∅

11



such that for all λ ∈ ΛΩ we have λ(f, ω) = λ(g, ω) (f, g ∈ F, ω ∈ Ω), that is, all
λ ∈ ΛΩ depend only on ω ∈ Ω (the λ ∈ ΛF may depend on both f and ω). For
λ ∈ ΛΩ we use both the notation λ(f, ω) as well as λ(ω). Note that there is always
the trivial splitting ΛF = Λ, ΛΩ = ∅. An example of a nontrivial splitting is (30)
above. Fix ω ∈ Ω. We define the restricted problem Pω = (F,G, Sω, K,ΛF,ω) by
setting

Sω : F → G, Sω(f) = S(f, ω), ΛF,ω = {λ( · , ω) : λ ∈ ΛF}.

To a given a deterministic algorithm A for P and ω ∈ Ω we want to associate
a restricted algorithm Aω for the respective problem Pω in a rigorous way.

Lemma 3. Let A be a deterministic algorithm for P and let ω ∈ Ω. Then there
is a deterministic algorithm Aω for Pω such that for all f ∈ F

card(Aω, f) = card(A, f, ω), (36)

Aω(f) = A(f, ω). (37)

Proof. Let µ0 ∈ ΛF be any element, let A = ((Li)
∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0), and fix

ω ∈ Ω. We define Aω = ((Li,ω)∞i=1, (τi,ω)∞i=0, (ϕi,ω)∞i=0) and a sequence (ξi)
∞
i=1 of

functions ξi : Ki → Ki by induction. Put

τ0,ω = τ0, ϕ0,ω = ϕ0, (38)

L1,ω =

{
L1( · , ω) if L1 ∈ ΛF

µ0( · , ω) if L1 ∈ ΛΩ
(39)

and define for z1 ∈ K

ξ1(z1) =

{
z1 if L1 ∈ ΛF

L1(ω) if L1 ∈ ΛΩ.
(40)

Now let i ≥ 1 and assume that (Lj,ω)j≤i, (τj,ω)j<i, (ϕj,ω)j<i, and (ξj)j≤i have been
defined. Let z1, . . . , zi, zi+1 ∈ K and set

λi+1 = Li+1(ξi(z1, . . . , zi)) (41)

Li+1,ω(z1, . . . , zi) =

{
λi+1( · , ω) if λi+1 ∈ ΛF

µ0( · , ω) if λi+1 ∈ ΛΩ
(42)

τi,ω(z1, . . . , zi) = τi(ξi(z1, . . . , zi)) (43)

ϕi,ω(z1, . . . , zi) = ϕi(ξi(z1, . . . , zi)) (44)

ξi+1(z1, . . . , zi, zi+1) =

{
(ξi(z1, . . . , zi), zi+1) if λi+1 ∈ ΛF

(ξi(z1, . . . , zi), λi+1(ω)) if λi+1 ∈ ΛΩ.
(45)

Now let f ∈ F , let (ai)
∞
i=1 be the sequence given by (27) and (28), and define,

respectively

a1,ω = L1,ω(f) (46)

ai,ω =
(
Li,ω(a1,ω, . . . , ai−1,ω)

)
(f) (i ≥ 2). (47)

12



We show by induction that for all i ∈ N.

ξi(a1,ω, . . . , ai,ω) = (a1, . . . , ai). (48)

For i = 1 this follows directly from (27), (39), (40), and (46). Now let i ∈ N and
assume that (48) holds. Let

λi+1 = Li+1(ξi(a1,ω, . . . , ai,ω)) = Li+1(a1, . . . , ai). (49)

First assume λi+1 ∈ ΛF . Then by (47), (42), (49), and (28)

ai+1,ω =
(
Li+1,ω(a1,ω, . . . , ai,ω)

)
(f) = λi+1(f, ω)

=
(
Li+1(a1, . . . , ai)

)
(f, ω) = ai+1.

With (45) this gives

ξi+1(a1,ω, . . . , ai,ω, ai+1,ω) = (ξi(a1,ω, . . . , ai,ω), ai+1,ω) = (a1, . . . , ai, ai+1).

In the case λi+1 ∈ ΛΩ we have, using (49) and (28)

λi+1(ω) = λi+1(f, ω) =
(
Li+1(a1, . . . , ai)

)
(f, ω) = ai+1.

By (45),

ξi+1(a1,ω, . . . , ai,ω, ai+1,ω) = (ξi(a1,ω, . . . , ai,ω), λi+1(ω)) = (a1, . . . , ai, ai+1).

This proves (48). From (38) and (48) we conclude that for all i ∈ N0

τi,ω(a1,ω, . . . , ai,ω) = τi(a1, . . . , ai)

ϕi,ω(a1,ω, . . . , ai,ω) = ϕi(a1, . . . , ai).

This implies (36) and (37).

Next we derive a lower bound for the randomized n-th minimal errors. Anal-
ogous to the classical one it uses the average setting with respect to a probability
measure on F . However, due to the additional stochastic component, it is some-
what more involved. For the notation of the average case setting we refer to [6],
[7].

Lemma 4. Let ν be a probability measure on F supported by a finite set. Then
for all n ∈ N0,

eran
n (S, F × Ω, G) ≥ 1

3
inf

D∈Σ,P(D)≥1/4

∫
D

eavg
2n (Sω, ν, G)dP(ω). (50)

13



Proof. Let A ∈ A ran
n (P), A = ((Ω1,Σ1,P1), (Aω1)ω1∈Ω1). Then

n ≥ sup
f∈F

∫
Ω1×Ω

card(Aω1 , f, ω)dP1(ω1)dP(ω)

≥
∫
F

∫
Ω1×Ω

card(Aω1 , f, ω)dP1(ω1)dP(ω)dν(f)

=

∫
Ω1×Ω

∫
F

card(Aω1 , f, ω)dν(f)dP1(ω1)dP(ω). (51)

Let

B =

{
(ω1, ω) ∈ Ω1 × Ω :

∫
F

card(Aω1 , f, ω)dν(f) ≤ 2n

}
(52)

and for ω1 ∈ Ω1, Bω1 = {ω : (ω1, ω) ∈ B}. Since ν is of finite support, it
follows that B ∈ Σ1 × Σ and Bω1 ∈ Σ. We also set B′ = {ω1 : P(Bω1) ≥ 1/4},
then B′ ∈ Σ1. Moreover, (51) and (52) yield (P1 × P)(B) ≥ 1/2, hence 1

2
≤

P1(B′) + 1
4
(1− P1(B′)), which implies P1(B′) ≥ 1/3.

Now we estimate the error of A = (Aω1)ω1∈Ω1 from below. For each ω1 ∈ Ω1

and ω ∈ Ω, let Aω1,ω be the respective algorithm for Sω resulting from Aω1

according to Lemma 3.

e(S,A, F × Ω, G) = sup
f∈F

∫
Ω1×Ω

‖S(f, ω)− Aω1(f, ω)‖GdP1(ω1)dP(ω)

≥
∫

Ω1×Ω

∫
F

‖Sω(f)− Aω1,ω(f)‖Gdν(f)dP1(ω1)dP(ω)

≥
∫
B′

∫
Bω1

∫
F

‖Sω(f)− Aω1,ω(f)‖Gdν(f)dP(ω)dP1(ω1)

≥
∫
B′

∫
Bω1

eavg
2n (Sω, ν, G)dP(ω)dP1(ω1)

≥ 1

3
inf

D∈Σ,P(D)≥1/4

∫
D

eavg
2n (Sω, ν, G)dP(ω).

Let (γj)
∞
j=1 be a sequence of independent standard Gaussian random variables.

For m ∈ N we set Jm = {1, 2, . . . ,m}.

Lemma 5. There is a constant c > 0 such that for all m ∈ N

P

ω ∈ Ω : min
J⊆Jm,|J |≥m/2

(∑
j∈J

γj(ω)2

)1/2

≥ cm1/2

 ≥ 7/8.
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Proof. Let k = dm/2e and let c0 > 0 be a constant to be fixed later on. Then

P

{
min

J⊆Jm,|J |≥m/2

∑
j∈J

γj(ω)2 ≥ c2
0m

}

= P

{
min

J⊆Jm,|J |=k

∑
j∈J

γj(ω)2 ≥ c2
0m

}

≥ 1−
∑

J⊆Jm,|J |=k

P

{∑
j∈J

γj(ω)2 < c2
0m

}

≥ 1− 22k P

{
k∑
j=1

γj(ω)2 < 2c2
0k

}
. (53)

Furthermore, let Bk
2 denote the unit ball of Rk, endowed with the Euclidean norm

| · |. There is a constant c1 > 0 such that for all k ∈ N

Vol
(
Bk

2

)
≤ ck1k

−k/2, (54)

see, e.g., [11], relation 1.18 on p. 11. Consequently,

P

{
k∑
j=1

γj(ω)2 < 2c2
0k

}
= (2π)−k/2

∫
|x|≤c0(2k)1/2

e−|x|
2/2dx

≤ Vol
(
c0(2k)1/2Bk

2

)
= ck0(2k)k/2Vol

(
Bk

2

)
≤ 2k/2ck0c

k
1. (55)

Joining (53) and (55) and setting c0 = 2−11/2c−1
1 , we arrive at

P

{
min

J⊆Jm,|J |≥m/2

∑
j∈J

γj(ω)2 ≥ c2
0m

}
≥ 1− 2−3k ≥ 7/8.

Proof of Theorem 3. Two parts of the lower bound estimates easily reduce to
known results. Let θ0 ∈ C(Q)∗ be defined by θ0(f) = f(0) (f ∈ C(Q)). Firstly,
we let f1(s, t, ω) = κt and put F1 := {f1}. Then F1 ⊆ F r

2 (Q× [0, 1]× Ω;κ). We
have

(θ0 ◦S1)(f1, ω) = κ

(∫ 1

0

tdW (t)

)
(ω) (P-almost surely).

Consequently,

eran
n (S1,F

r
2 × Ω, C(Q)) ≥ eran

n (θ0 ◦S1, F1 × Ω,R) ≥ cn−1, (56)
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where the last relation follows from Theorem 1 in [15] (who considered deter-
ministic algorithms) and Lemma 2 above. Secondly, we set f2(s, t, ω) ≡ κ and
F2 := {f2}. We have

F2 ⊆ F r
q (Q× [0, 1]× Ω;κ), F2 ⊆ F r1,%

q (Q× [0, 1]× Ω;κ),

and (
(θ0 ◦S )(f2, ω)

)
(t) = κW (t, ω).

Therefore we get from [14] and [9], using Lemma 2 again,

eran
n (S ,F r

q (Q× [0, 1]× Ω;κ)× Ω, C(Q× [0, 1]))

≥ eran
n (θ0 ◦S , F2 × Ω, C([0, 1])) ≥ cn−1/2(log n)1/2, (57)

and similarly

eran
n (S , F r1,%

q (Q× [0, 1]× Ω;κ), C(Q× [0, 1])) ≥ cn−1/2(log n)1/2. (58)

Now we consider a third subclass. Let ϕ0 be a C∞ function on Rd with support
in Q and ‖ϕ0‖C(Q) = 1 and let ϕ1 be a C∞ function on R with support in [0, 1]
and ‖ϕ1‖L2(R) = 1. Let m0,m1 ∈ N and let Qi (i = 1, . . . ,md

0) be the subdivision
of Q into md

0 cubes of disjoint interior of side-length m−1
0 . Let si be the point

in Qi with minimal coordinates. Put tj = j/m1 and define for s ∈ Q, t ∈ [0, 1],
i = 1, . . . ,md

0, j = 1, . . . ,m1

ϕ0,i(s) = ϕ0(m0(s− si)), ϕ1,j(t) = ϕ1(m1(t− tj)), ψij(s, t) = ϕ0,i(s)ϕ1,j(t).

Denote Km0m1 = {1, . . . ,md
0} × {1, . . . ,m1} and

Ψm0m1 =

 ∑
(i,j)∈Km0m1

δijψij : δij ∈ {−1, 0, 1}

 .

The stochastic integral m
1/2
1

∫ 1

0
ϕ1,j(t)dW (t) is an element of L2(Ω), hence an

equivalence class. Let the function γj = γj(ω) be any representative of it. Since

‖ϕ1,j‖L2([0,1]) = m
−1/2
1 , the (γj)

m1
j=1 are independent standard Gaussian random

variables. By (20) and the linearity of the stochastic integral we have for (i, j) ∈
Km0m1 and each s ∈ Q

(S1(ψij, ω))(s) = m
−1/2
1 ϕ0,i(s)γj(ω)

P-almost surely. Using continuity and a density argument yields that there is an
Ω0 ∈ Σ with P(Ω0) = 1 such that for all ω ∈ Ω0 and (i, j) ∈ Km0m1

S1(ψij, ω) = m
−1/2
1 ϕ0,iγj(ω).
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We conclude, using the linearity of S1 that for all δij ∈ {−1, 0, 1} and ω ∈ Ω0

S1

( ∑
(i,j)∈Km0m1

δijψij, ω

)
= m

−1/2
1

md
0∑

i=1

ϕ0,i

m1∑
j=1

δijγj(ω). (59)

Let {εij : (i, j) ∈ Km0m1} be independent Bernoulli random variables with
P2{εij = −1} = P2{εij = +1} = 1/2 on a probability space (Ω2,Σ2,P2). Let
ν be the distribution of the Ψm0m1 valued random variable

∑
(i,j)∈Km0m1

εijψij.

Let n ∈ N be such that
md

0m1 ≥ 8n. (60)

According to Lemma 4

eran
n (S1,Ψm0m1 × Ω, C(Q)) ≥ 1

3
inf

D∈Σ,P(D)≥1/4

∫
D

eavg
2n (S1,ω, ν, C(Q))dP(ω). (61)

Lemma 6 of [6] together with (59) and (60) gives for ω ∈ Ω0

eavg
2n (S1,ω, ν, C(Q))

≥ 1

2
min

K ⊆Km0m1 ,|K |≥m
d
0m1−4n

E P2

∥∥∥∥∥S1

( ∑
(i,j)∈K

εijψij, ω

)∥∥∥∥∥
C(Q)

≥ 1

2
min

K ⊆Km0m1 ,|K |≥m
d
0m1−4n

E P2

∥∥∥∥∥m−1/2
1

md
0∑

i=1

ϕ0,i

∑
j: (i,j)∈K

εijγj(ω)

∥∥∥∥∥
C(Q)

≥ 1

2
m
−1/2
1 min

K ⊆Km0m1 ,|K |≥m
d
0m1−4n

E P2 max
1≤i≤md

0

∣∣∣∣∣ ∑
j: (i,j)∈K

εijγj(ω)

∣∣∣∣∣
≥ 1

2
m
−1/2
1 min

K ⊆Km0m1 ,|K |≥m
d
0m1−4n

max
1≤i≤md

0

E P2

∣∣∣∣∣ ∑
j: (i,j)∈K

εijγj(ω)

∣∣∣∣∣. (62)

By Khintchine’s inequality, see [10], Th. 2.b.3,

E P2

∣∣∣∣∣ ∑
j: (i,j)∈K

εijγj(ω)

∣∣∣∣∣ ≥ c

( ∑
j: (i,j)∈K

γj(ω)2

)1/2

.

So we obtain from (62)

eavg
2n (S1,ω, ν, C(Q))

≥ cm
−1/2
1 min

K ⊆Km0m1 ,|K |≥m
d
0m1−4n

max
1≤i≤md

0

( ∑
j: (i,j)∈K

γj(ω)2

)1/2

.
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For each K ⊆ Km0m1 with |K | ≥ md
0m1−4n we have by (60) |K | ≥ |Km0m1|/2,

hence there is an i with 1 ≤ i ≤ md
0 such that |{j : (i, j) ∈ K }| ≥ m1/2. With

Jm1 = {1, 2, . . . ,m1} it follows that

eavg
2n (S1,ω, ν, C(Q)) ≥ cm

−1/2
1 min

J⊆Jm1 ,|J |≥m1/2

(∑
j∈J

γj(ω)2

)1/2

,

and therefore, by (61) and Lemma 5, for n satisfying (60),

eran
n (S1,Ψm0m1 × Ω, C(Q))

≥ cm
−1/2
1 inf

D∈Σ,P(D)≥1/4

∫
D

min
J⊆Jm1 ,|J |≥m1/2

(∑
j∈J

γj(ω)2

)1/2

dP(ω) ≥ c. (63)

Let 2 ≤ q < ∞ and observe that there is a constant c0 > 0 such that for
m0,m1 ∈ N

c0(max(m0,m1))−rΨm0m1 ⊆ F r
q (Q× [0, 1]× Ω;κ). (64)

For n ∈ N put m0 = m1 =
⌈
4n

1
d+1

⌉
, hence (60) is satisfied, and therefore (18),

(63), and (64) imply

eran
n (S ,F r

q (Q× [0, 1]× Ω;κ)× Ω, C(Q× [0, 1]))

≥ eran
n (S1,F

r
q (Q× [0, 1]× Ω;κ)× Ω, C(Q))

≥ c−1
0 m−r0 eran

n (S1,Ψm0m1 × Ω, C(Q)) ≥ cn−
r

d+1 . (65)

Combining (56–57) and (65) proves the lower bounds (31) and (33).
Next let 2 < q <∞ and note that there is a constant c1 > 0 such that for all

m0,m1 ∈ N

c1m
−r1
0 m−%1 Ψm0m1 ⊆ F r1,%

q (Q× [0, 1]× Ω;κ) ⊆ F r1,%(Q× [0, 1]× Ω;κ). (66)

Let n ∈ N. First we put m0 =
⌈
8n

1
d

⌉
, m1 = 1. Again (60) is satisfied, thus (18),

(63), and (66) yield

eran
n (S , F r1,%

q × Ω, C(Q× [0, 1])) ≥ eran
n (S1, F

r1,%
q × Ω, C(Q))

≥ c−1
1 m−r0 eran

n (S1,Ψm0m1 × Ω, C(Q)) ≥ cn−
r
d . (67)

Now we set m0 = 1, m1 = 8n. Clearly, (60) holds and, using again (18), (63),
and (66), we conclude

eran
n (S , F r1,%

q × Ω, C(Q× [0, 1])) ≥ eran
n (S1, F

r1,%
q × Ω, C(Q))

≥ c−1
1 m−%1 eran

n (S1,Ψm0m1 × Ω, C(Q)) ≥ cn−%. (68)

Now the lower bounds (32) and (34) follow from (58) and (67–68), which com-
pletes the proof.

18



References

[1] Th. Daun and S. Heinrich. Complexity of Banach space valued and para-
metric integration. In J. Dick, F. Y. Kuo, G. W. Peters and I. H. Sloan,
editors, Monte Carlo and Quasi-Monte Carlo Methods 2012, pages 297–316.
Springer-Verlag, 2013.

[2] Th. Daun and S. Heinrich. Complexity of Banach space valued and paramet-
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[15] G. W. Wasilkowski and H. Woźniakowski. On the complexity of stochastic
integration. Mathematics of Computation, 70(234):685–698, 2001.

20


