
Monte Carlo Complexity of Parametric

Integration

stefan heinrich and eugène sindambiwe

Department of Computer Science, University of Kaiserslautern

Postfach 3049

D-67653 Kaiserslautern, Germany

Abstract

The Monte Carlo complexity of computing integrals depending on a

parameter is analyzed for smooth integrands. An optimal algorithm is

developed on the basis of a multigrid variance reduction technique. The

complexity analysis implies that our algorithm attains a higher convergence

rate than any deterministic algorithm. Moreover, because of savings due

to computation on multiple grids, this rate is also higher than that of

previously developed Monte Carlo algorithms for parametric integration.

1 introduction

Multivariate integration is a standard field of application for Monte Carlo meth-
ods. Usually, a single integral is approximated. In this paper we study the case
of parametric integration, that is, the integral depends on a parameter. Since
the solution is now a function (of the parameter), this problem carries features
of both integration and approximation. In the parametric case a direct pointwise
application of Monte Carlo methods may lead to difficulties, e.g. to nonsmooth-
ness of the resulting curves due to fluctuations. Frolov and Chentsov (1962),
Sobol (1962, 1973) have developed and analyzed the method of dependent tests
to overcome these difficulties. Recent approaches to this problem are contained in
Ermakov and Mikhailov (1982), Mikhailov (1991), Prigarin (1995), and Voytishek
(1996).

From the point of view of complexity theory this problem has not been studied
before. It is the aim of this paper to provide such an analysis. For the class of r-
times continuously differentiable functions we determine the order of the minimal
error (except for one case in which a logarithmic gap occurs). This gives matching
upper and lower complexity bounds. These bounds are of interest also in relation
to other complexity results. They represent a kind of ”interpolation” between
the two boundary cases of parametric integration − pure integration and pure
approximation. It is well-known, that in the first case Monte Carlo methods are
superior to deterministic ones (for the considered class), while in the the second
case they are not. It turns out that parametric integration shows an intermediate
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behavior: Monte Carlo is still superior, but to a smaller extend, as the dimension
of the parameter space increases. A detailed discussion is given in Section 6. But
our analysis yields more than the complexity rates. For the proof of the upper
bounds we develop a new algorithm, which is directly implementable and is easily
extended to other situations than the model class. This algorithm possesses a new
feature − the multigrid structure of variance reduction first developed for inte-
gral equations in Heinrich (1998a). This allows considerable savings of arithmetic
work as compared to the previous Monte Carlo algorithms for parametric inte-
gration mentioned above (see Heinrich, 1998b, for a comparative analysis). The
paper can be considered as an application and further development of the ideas
in Heinrich (1998a) to another (though related) problem. In fact, the paramet-
ric integration problem is conceptually simpler than the full solution of integral
equation studied in Heinrich (1998a). So it is a side effect of the present paper
that it makes the essence of that technically quite involved approach more trans-
parent. On the other hand, only the case of equal dimension parameters d1 = d2

of approximation (d1) and integration (d2) is truly related to integral equations,
while it is the various constellations between d1 and d2 which provides the full
understanding of the complexity of parametric integration.

In Section 2 we present the required notions from information-based complexity
theory, recall related previous results and formulate the main result. Section 3
is devoted to the algorithm description. The analysis of this algorithm and the
proof of the upper bound can be found in Section 4. The proof of the lower bound
is the contents of Section 5, and in the final Section 6 we give some comments
and illustrations of the results obtained.

2 preliminaries

In this section we formulate the problem to be investigated. Then, in order
to be precise about the setting, we give some definitions from information-based
complexity theory and Monte Carlo methods, and finally we formulate the main
result.

2.1 Problem Formulation

Let d1, d2 ∈ IN0 := IN ∪ {0} be fixed such that d1 + d2 > 0. By Gi we denote the
di-dimensional unit cube, i.e. Gi := [0, 1]di for i = 1, 2. We agree upon setting
[0, 1]0 = {0}. Moreover, the length of some multi-index α = (α1, α2, . . . , αd1+d2

) ∈
INd1+d2

0 is |α| := α1 + α2 + . . .+ αd1+d2
. For r ∈ IN fixed, let X := Cr(G1 × G2),

i.e. the space X consists of functions f with continuous partial derivatives Dαf
on G1 ×G2, for all α, |α| ≤ r. Moreover we set Y := C(G1). Let ‖ · ‖ denote the
maximum norm both on Y and C(G1×G2) and let the norm ‖ · ‖r of the Banach
space X be given by

‖f‖r := max
|α|≤r

‖Dαf‖.
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Let X0 be the unit ball of X. Our aim is to determine the complexity of numer-
ically approximating the solution operator S : X → Y ,

(Sf)(s) :=
∫

G2

f(s, t)dt, s ∈ G1. (1)

That is, we study parametric integration: Integrate the family of functions f(s, t)
parametrized by s ∈ G1 over t ∈ G2. The limiting cases where either d1 or d2 is
equal to zero were formally included because they represent classical problems of
numerical mathematics. In fact, d1 = 0 leads to integration on Cr(G2), whereas
d2 = 0 corresponds to function approximation on Cr(G1) in the norm of C(G1).
Both are well-analyzed for several settings. The aim of this paper is to study
the intermediate cases in which d1 6= 0 and d2 6= 0. We present a Monte Carlo
method approximating S. Then we show it to be order optimal with respect to
the Monte Carlo error, among all methods using (randomized) adaptive standard
information of varying cardinality.

2.2 Monte Carlo Setting

We use the general terminology of information-based complexity (IBC), which
is explained in more details in Traub, Wasilkowski, and Woźniakowski (1988) or
Novak (1988). In order to be as selfcontained as possible, we summarize the IBC
notions needed in this paper.

First, we have to specify the type of data, or in IBC terms, the information,
which is the input for algorithmic approximations of S. In our case, adaptive
standard information is used. This is defined as follows:
Let Λ be defined by

Λ :=
{
Lα

(s,t) : α ∈ INd1+d2, |α| ≤ r, (s, t) ∈ G1 ×G2

}
,

where
Lα

(s,t)(f) := (Dαf)(s, t).

Let teri : IRi → {0, 1}, i ∈ IN be some (termination) functions and let a sequence
of mappings (Li)i∈IN be given such that for i ∈ IN,

Li : X × IRi−1 → IR,

and
Li( · ; y1, . . . , yi−1) ∈ Λ for all (y1, . . . , yi−1) ∈ IRi−1.

Let the (standard information) operator N : X → IR∞ := ∪∞
i=1IR

i be defined as

N(f) = [L1(f), L2(f ; y1), . . . , Lnf
(f ; y1, . . . , ynf−1)],

where y1 = L1(f) and yi = Li(f ; y1, . . . , yi−1), (i > 1). Then N(f) is called
(adaptive) standard information. Its cardinality is

card(N(f)) := nf := min {n ∈ IN : tern(y1, . . . , yn) = 1} .
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Now, an algorithm is simply any mapping ϕ : IR∞ → Y . Thus, some infor-
mation N(f) is used as input data to the algorithm ϕ, so that the composition
ϕ◦N : X → Y gives some computational approximation to the solution operator
S. Let the set of all information operators N be denoted by N and the set of all
algorithms ϕ by Φ. Now, we can give the definition of an abstract Monte Carlo
method as in Novak (1988), Traub, Wasilkowski, and Woźniakowski (1988), and
Heinrich (1994, 1998a).

An abstract Monte Carlo method M is a couple

M = ((Ω,Σ, µ), (Nω, ϕω)ω∈Ω) ,

where (Ω,Σ, µ) is a probability space, i.e. Ω is a nonempty set, Σ a σ-algebra
of subsets of Ω, and µ a probability measure on Σ. Furthermore (Nω, ϕω) ∈
N × Φ, (ω ∈ Ω) is such that for each f ∈ X0, card(Nω(f)) and ϕω(Nω(f)) are
Σ-measurabe functions of ω (the latter with respect to the σ-algebra of Borel sets
of C(G1)).

Let M be the class of all Monte Carlo methods. Then the Monte Carlo cardinality
of a fixed M ∈ M is defined as

cardmc(M) := sup
f∈X0

∫

Ω

card(Nω(f)) dµ(ω).

The error of M related to the solution operator S is defined by

emc(S,M) := sup
f∈X0

∫

Ω

‖Sf − ϕω(Nω(f))‖ dµ(ω). (2)

The minimal error among all Monte Carlo methods M with cardmc(M) ≤ n, or
the so-called n-th minimal Monte Carlo error, is

emc
n (S) := inf

M∈M

{
emc(S,M) : cardmc(M) ≤ n

}
. (3)

In our case of standard information, we use the simplest cost model: We as-
sume the functionals Li, arithmetic operations as well as comparisons to have
the same price, and set it to unity. In the following, all of the above opera-
tions are referred to as basic operations. Consequently for fixed f and ω, the cost
function cost(ϕω, Nω(f)) of some random approximation ϕω(Nω(f)) is the sum of
card(Nω(f)) and the number of basic operations occuring within the computation
of ϕω(Nω(f)). Therefore, the cost of a Monte Carlo method M is

costmc(M) := sup
f∈X0

∫

Ω

cost(ϕω, Nω(f))dµ(ω).

Finally, for ε ≥ 0 the Monte Carlo complexity compmc(S, ε) is

compmc(S, ε) := inf
M∈M

{
costmc(M) : emc(S,M) ≤ ε

}
. (4)
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Although we formulate all results in terms of minimal errors, i.e. emc
n (S), the

corresponding complexity statements are easily derived. For the lower bound, this
is trivial, since, by definition, we always have costmc(M) ≥ cardmc(M), while the
upper bound follows from the cost analysis of the proposed algorithm given at
the end of section 4.

Note, furthermore, that the special case Ω = {ω0} corresponds to determin-
istic methods. Thus, without extra definitions, we consider the deterministic
setting as clear. And to avoid any confusion, the deterministic analogues of the
above introduced quantities are written with the ”det” superscript.

2.3 Main results

First, let us recall the well-known results for the special cases where either d1 = 0
or d2 = 0.
Our formulation uses the asymptotic notation an � bn for sequences of non-
negative reals an and bn, which means that there exist some constant c > 0 and
some n0 ∈ IN such that an ≤ c bn for all n ≥ n0. If an � bn and bn � an, then we
write an ≍ bn. We often use the same symbol c for possibly different constants.
The following two theorems are folklore.

theorem 2.1 Let Int : Cr(G2) → IR denote the integration

Int(f) :=
∫

G2

f(s)ds.

Then

edet
n (Int) ≍ n−r/d2 , emc

n (Int) ≍ n−(2r+d2)/2d2 . (5)

We mention Sard (1949), Bückner (1950) and Nikolskij (1950), who have done
the earliest lower bound investigations for quadrature formulae. Bakhvalov (1959,
1961) was the first who pointed out the superiority of Monte Carlo integration
over deterministic quadrature formulae. He proved the above result for random
information with fixed cardinality. But the same complexity results remain valid
for varying cardinality, as Novak (1988) proved. The integration problem was
investigated by many other authors for several function spaces and settings. A
list of some of them can be found in Traub, Wasilkowski, and Woźniakowski
(1988).
On the other hand, Monte Carlo methods do not lead to any improvement for
the problem of function approximation.

theorem 2.2 Let Appr denote the function approximation problem, that is the
embedding operator from Cr(G1) to C(G1). Then

edet
n (Appr) ≍ emc

n (Appr) ≍ n−r/d1 . (6)

The function approximation problem has also been investigated for different
function spaces and settings. The reader could consult the above cited sources
for more literature.
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It is intuitively clear that Monte Carlo methods should lead to some improve-
ment if d2 6= 0. Moreover, this cannot be as much as for integration as long as
d1 6= 0.
In order to enable comparison, we also give the result in the deterministic set-
ting. We omit the easy proof. The upper bound is obvious from classical function
approximation. The lower bound can be obtained by reduction to the case of in-
tegration over G1 ×G2.

theorem 2.3 The n-th minimal deterministic error of the operator S from (1)
behaves like

edet
n (S) ≍ n−r/(d1+d2). (7)

The following theorem settles the complexity of parametric integration and
answers the question of how much better Monte Carlo methods are (as compared
to deterministic schemes).

theorem 2.4 For d1 6= 0 and d2 6= 0 it holds:

emc
n (S) ≍

{
n−(2r+d2)/2(d1+d2)(log n)1/2, if r > d1/2
n−r/d1(logn)r/d1 , if r < d1/2

(8)

and
n−1/2(logn)1/2 � emc

n (S) � n−1/2(log n)3/2 , if r = d1/2 . (9)

Note that in asymptotic statements we leave the logarithm unspecified,
whereas in cases in which the basis is essential we write e.g. log2 n or ln n
to indicate base 2 or the natural logarithm. The proof of the above theorem
consists of three parts: First, we give a concrete Monte Carlo approximation A
for S. Second, we analyze the behavior of its error emc(S,A), and gain in this
way an upper bound of emc

n (S). Finally, except for (9), where a gap of log n will
remain, the optimality of the algorithm is established by showing its convergence
rate not to be improvable. For this purpose we prove that emc

n (S) has a lower
bound of the same order as the algorithm accuracy.

3 the algorithm

3.1 Notation and algorithmic preliminaries

From now on we assume d1 6= 0 and d2 6= 0. Let k ∈ IN0 be fixed. Let
∏(j)

k be the
partition of Gj (j = 1, 2) into cubes of sidelength 2−k with disjoint interior. The

equidistant mesh of sidelength r−12−k on Gj , j = 1, 2 will be denoted by Γ
(j)
k .

This means

Γ
(j)
k :=

{
r−12−k(i1, . . . , idj

) : 0 ≤ i1, . . . , idj
≤ r2k

}
. (10)

Let P
(j)
k : C(Gj) → C(Gj) be the dj-dimensional composite Lagrange interpo-

lation of degree r on Γ
(j)
k . That is, on each cube Q ∈

∏(j)
k the function P

(j)
k f

is the (dj-dimensional) Lagrange interpolation over the nodes Q ∩ Γ
(j)
k . For a
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more detailed definition see Heinrich (1998a). Let Pr(
∏(j)

k ) denote the space of
all functions g ∈ C(Gj) such that g|Q is a polynomial of (maximum) degree less

than or equal to r for all Q ∈
∏(j)

k . Clearly, P
(j)
k maps C(Gj) into Pr(

∏(j)
k ).

Note that for f fixed P
(j)
k f is uniquely defined by {f(s) : s ∈ Γ

(j)
k }. As a conse-

quence, the operator P
(j)
k will also be interpreted as defined on ℓ∞(Γ

(j)
k ).

Finally, we also consider the operator P
(j)
k as acting in the space C(G1 × G2),

meaning that we interpolate with respect to one variable only, leaving the other
one fixed. So P

(1)
k is defined by

(
P

(1)
k f

)
(s, t) :=

(
P

(1)
k f( · , t)

)
(s).

For x ∈ IR the notation ⌈x⌉ means the smallest integer greater than or equal to,
and [x] the greatest one smaller than or equal to x.

The Monte Carlo method given below uses the deterministic meshes Γ
(1)
k with

n1,k := |Γ(1)
k | = (r2k + 1)d1 (11)

points for the s-component and n2,k (a number still to be chosen) independent,
uniformly distributed samples τjk, j = 1, . . . , n2,k for the t component. The
resulting algorithm is a multilevel procedure in which the sample number n2,k is a

decreasing sequence of k, whereas the meshes Γ
(1)
k become finer with higher values

of k. As a result, the deterministic error gets smaller, the stochastic greater, so
that with a careful choice of the parameters both errors are in balance. This
leads to the optimal convergence order of the algorithm.

3.2 Algorithm description

1. input:

Cardinality parameter: n
Function f : G1 ×G2 → IR

2. Level parameters:

•

m :=
[

1

d1 + d2
(log2 n) + 1

]
(12)

• Starting level:

m̃ =

{
m, if r ≥ d1/2
0 else

(13)

• Final level:

ℓ :=

{
⌈(1 + d2/2r)m⌉, if r ≥ d1/2
⌈(1 + d2/d1)m⌉ − p else, where p := [(log2m)/d1]

(14)

3. Number of samples in level k, k = m̃, . . . , ℓ:

n2,k :=

{
⌈2d2m−(r+d1/2)(k−m)⌉, if r ≥ d1/2,
⌈2(d1+d2)m−d1k−(d1/2−r)(ℓ−k)⌉ else

(15)
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4. Random variables τkj(ω):
Let τkj = τkj(ω), (j = 1, . . . , n2,k; k = m̃, . . . , ℓ) be independent, uniformly
distributed on G2 random variables on some probability space (Ω,Σ, µ).

5. Monte Carlo sampling on the starting level m̃:

a) If r ≥ d1/2, compute for all s ∈ Γ
(1)
m̃

ηm̃(s) :=
∫

G2

(
P

(2)
m̃ f

)
(s, t)dt+

1

n2,m̃

n2,m̃∑

j=1

(
f(s, τm̃j) −

(
P

(2)
m̃ f

)
(s, τm̃j)

)

(16)
(Note that the integral is, in fact, just a deterministic multivariate
composite Newton Cotes quadrature. So (16) is Monte Carlo with
separation of the main part.)

b) If r < d1/2, put for s ∈ Γ
(1)
m̃

ηm̃(s) :=
1

n2,m̃

n2,m̃∑

j=1

f(s, τm̃j) (17)

(Note that m̃ = 0, so we have here the classical Monte Carlo on the
roughest grid.)

6. Monte Carlo sampling on higher levels:

For m̃ < k ≤ ℓ, compute for all s ∈ Γ
(1)
k ,

ηk(s) :=
1

n2,k

n2,k∑

j=1

f(s, τkj) (18)

7. Final approximation by levelwise interpolation:

Af := P
(1)
m̃ ηm̃ +

ℓ∑

k=m̃+1

(P
(1)
k − P

(1)
k−1)ηk (19)

So the result of the algorithm is an element of Pr(
∏(1)

ℓ ).

4 algorithm analysis

Clearly, the approximation constructed by the algorithm described in the
previous section is a Monte Carlo method in the abstract sense. The aim of this
section is to analyze this algorithm and to prove the upper bound in Theorem
2.4. Let τ : Ω → G2 be uniformly distributed on G2. Then for all f ∈ X0 and
s ∈ G1

E(f(s, τ)) = Sf(s) (20)

and
E

(
P

(1)
k f( · , τ)

)
= P

(1)
k Sf. (21)
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Therefore for all k > m̃

E
(
P

(1)
k − P

(1)
k−1

)
ηk = P

(1)
k Sf − P

(1)
k−1Sf.

And for k = m̃ we get
EP

(1)
m̃ ηm̃ = P

(1)
m̃ Sf.

It follows that
E(Af) = P

(1)
ℓ Sf. (22)

We have
E‖Sf −Af‖ ≤ ‖Sf − P

(1)
ℓ Sf‖ + E‖Af − P

(1)
ℓ Sf‖. (23)

So the error splits into a deterministic and a stochastic part. Classical polynomial
approximation gives for j = 1, 2,

‖f − P
(j)
ℓ f‖ � 2−rℓ (24)

(throughout this chapter the constants c as well as those involved in the � and
≍ notation are assumed to be independent of all occurring variables except for
a possible dependence on the problem parameters d1, d2, and r). For the deter-
ministic part (24) gives

‖Sf − P
(1)
ℓ Sf‖ � 2−rℓ. (25)

Next we study the stochastic component. For this the following lemma will be
useful:
lemma 4.1 There is a constant c > 0 such that if n1, n2 ∈ IN and (ρj), j =
1, . . . , n2 is a sequence of independent ℓn1

∞–valued random variables with finite
second moment, then

Var
( n2∑

j=1

ρj

)
≤ c log n1

n2∑

j=1

Var(ρj), (26)

where Var(ρ) := E‖ρ− Eρ‖2
Z denotes the variance of a random variable ρ with

values in a Banach space Z.

This follows from Proposition 9.11 of Ledoux and Talagrand (1991), see also
Heinrich (1998a). Now we prove

lemma 4.2

E‖Af − P
(1)
ℓ Sf‖ � (logn1,ℓ)

1/2
( ℓ∑

k=m̃

(n2,k)
−12−2rk

)1/2
(27)

Proof. Let us introduce Pr(
∏(1)

k )–valued random variables ζkj for j = 1, . . . , n2,k

and k = m̃, . . . , ℓ. For k = m̃ and r ≥ d1/2 we define

ζm̃j(s, ω) :=
(
P

(1)
m̃ f

)
(s, τm̃j(ω)) −

(
P

(1)
m̃ P

(2)
m̃ f

)
(s, τm̃j(ω)).

We note that

P
(1)
m̃ ηm̃ = P

(1)
m̃ SP

(2)
m̃ f +

1

n2,m̃

n2,m̃∑

j=1

ζm̃j, (28)
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Eζm̃j = P
(1)
m̃ Sf − P

(1)
m̃ SP

(2)
m̃ f, (29)

and from (24),
‖ζm̃j‖ � 2−rm̃ (30)

for all j and ω. For k = m̃ and r < d1/2 we let

ζm̃j(s, ω) :=
(
P

(1)
m̃ f

)
(s, τm̃j(ω)). (31)

Hence

P
(1)
m̃ ηm̃ =

1

n2,m̃

n2,m̃∑

j=1

ζm̃j (32)

Eζm̃j = P
(1)
m̃ Sf (33)

and
‖ζm̃j‖ � 2−rm̃ (34)

(the latter means the boundedness of ζm̃j , since m̃ = 0).
Finally for k = m̃+ 1, . . . , ℓ we define (for all cases)

ζkj(s, ω) :=
(
(P

(1)
k − P

(1)
k−1)f

)
(s, τkj(ω)).

Obviously

(P
(1)
k − P

(1)
k−1)ηk =

1

n2,k

n2,k∑

j=1

ζkj, (35)

Eζkj = (P
(1)
k − P

(1)
k−1)Sf (36)

and from (24),
‖ζkj‖ � 2−rk. (37)

Now we represent Af − P
(1)
ℓ Sf by the help of these random variables. Let us

first assume r ≥ d1/2. Then, using (19), (28) and (35),

Af − P
(1)
ℓ Sf = P

(1)
m̃ SP

(2)
m̃ f +

ℓ∑

k=m̃

1

n2,k

n2,k∑

j=1

ζkj

− P
(1)
m̃ Sf −

ℓ∑

k=m̃+1

(P
(1)
k − P

(1)
k−1)Sf,

and from (29) and (36)

Af − P
(1)
ℓ Sf =

ℓ∑

k=m̃

1

n2,k

n2,k∑

j=1

(ζkj − Eζkj). (38)

On the basis of (19), (32), (35) and (33), (36) it is checked analogously that (38)
also holds in the case r < d1/2. By Hölder’s inequality and (38)

(
E‖Af − P

(1)
ℓ Sf‖

)2
≤ E‖Af − P

(1)
ℓ Sf‖2 = Var

( ℓ∑

k=m̃

1

n2,k

n2,k∑

j=1

ζkj

)
. (39)
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Since Pr(
∏(1)

m̃ ) ⊂ . . . ⊂ Pr(
∏(1)

ℓ ), we can consider all ζkj as Pr(
∏(1)

ℓ )–valued
random variables. On the other hand, it is easily checked that there is a linear
isomorphism U : Pr(

∏(1)
ℓ ) → ℓ

n1,ℓ
∞ with ‖U‖ ·‖U−1‖ ≤ c, where c does not depend

on ℓ. Here Pr(
∏(1)

ℓ ) is considered as equipped with the C(G1) norm. In fact, as

such a U we can take, e.g., the operator of restriction to Γ
(1)
ℓ . Then the inverse

U−1 is just the interpolation operator P
(1)
ℓ . Because of the isomorphism we can

apply Lemma 4.1 with ℓn1

∞ replaced by Pr(
∏(1)

ℓ ) and get

Var
( ℓ∑

k=m̃

1

n2,k

n2,k∑

j=1

ζkj

)
≤ c log n1,ℓ

ℓ∑

k=m̃

(n2,k)
−2

n2,k∑

j=1

Var(ζkj)

≤ c logn1,ℓ

ℓ∑

k=m̃

(n2,k)
−12−2rk

because of (30), (34) and (37). This proves the lemma. �

proposition 4.1

emc(S,A) �






n−(2r+d2)/2(d1+d2)(log n)1/2, if r > d1/2
n−r/d1(log n)r/d1 , if r < d1/2
n−1/2 logn, if r = d1/2.

(40)

Proof. We consider the cases r ≥ d1/2 and r < d1/2 separately.

1. Case r ≥ d1/2:

By (25), (14) and (12) it holds:

‖Sf − P
(1)
ℓ Sf‖ � 2−r(log2 n)(1+d2/2r)/(d1+d2) ≍ n−(2r+d2)/2(d1+d2). (41)

On the other side (11), (14) and (12) imply

log(n1,ℓ) ≍ ℓ ≍ log n,

and (27) together with (12)–(15) yields finally

(E‖Af − P
(1)
ℓ Sf‖)2 � log n

ℓ∑

k=m

2−d2m+(r+d1/2)(k−m)−2rk .

We rewrite the exponent on the right hand side as

−d2m+(r+d1/2)(k−m)−2rk = −d2m−2rm+(r+d1/2)(k−m)−2r(k−m)

so that we get

(E‖Af − P
(1)
ℓ Sf‖)2 � (logn) 2−(2r+d2)m

ℓ∑

k=m

2−(r−d1/2)(k−m). (42)

For r > d1/2 the sum on the right hand side of (42) is a geometric series,
bounded from above by some ℓ–independent (therefore also independent
from m and n) constant. So, combining (12), (23), (41) and (42) completes
the proof for r > d1/2.
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For r = d1/2 the sum on the right-hand side of (42) is bounded by ℓ,
which leads to

(E‖Af − P
(1)
ℓ Sf‖)2 � (log n) ℓ 2−(2r+d2)m.

As final result we get

E‖Af − P
(1)
ℓ Sf‖ � n−1/2 log n,

completing the proof of the case r = d1/2.

2. Case r < d1/2:

We proceed analogously. First, (25), (14) and (12) lead to

‖Sf − P
(1)
ℓ Sf‖ � 2−rℓ ≍ 2−rm(1+d2/d1)+r(log2 m)/d1 ≍ n−r/d1(logn)r/d1 .

Furthermore, by the same steps as above we get

(E‖Af − P
(1)
ℓ Sf‖)2 � log(n1,ℓ)2

−(d1+d2)m
ℓ∑

k=0

2d1k+(d1/2−r)(ℓ−k)−2rk.

For the exponent we have d1k+(d1/2− r)(ℓ−k)−2rk = (d1/2− r)(k+ ℓ).
Since r < d1/2,

(E‖Af − P
(1)
ℓ Sf‖)2 � log(n1,ℓ)2

−(d1+d2)m+(d1−2r)ℓ.

We use that 2d1ℓ−d2m ≍ 2d1m−log2 m and finally get

(E‖Af − P
(1)
ℓ Sf‖)2 � log(n1,ℓ) 2− log2 m−2rℓ ≍ 2−2rℓ

as 2log2 m ≍ log(n1,ℓ) by (14). Thus, up to a constant factor, the de-
terministic and the stochastic errors are bounded from above by 2−rℓ ≍
n−r/d1(log n)r/d1 . This completes the proof of the proposition. �

Now we estimate the cost of the algorithm. Let us fix s ∈ Γ
(1)
k . The computa-

tion of ηk(s) requires O(n2,k) function values and operations. Indeed, if k = m̃
and r ≥ d1/2, then the deterministic part of (16) requires O(2d2m) = O(n2,m̃)
operations and function values. The stochastic parts of (16), (17) and (18) are
done using O(n2,k) function values and operations. This has to be multiplied by

the cardinality of Γ
(1)
k , which is O(n1,k). The final interpolation procedure (19)

can obviously be accomplished in O(n1,ℓ) operations. Hence the overall number

of function values and arithmetic operations is of the order
ℓ∑

k=m̃
n1,kn2,k.

For r > d1/2 we get

ℓ∑

k=m̃

n1,kn2,k ≍
ℓ∑

k=m̃

2d1k+d2m−(r+d1/2)(k−m) ≍ n. (43)

12



The latter step follows from

d1k + d2m− (r + d1/2)(k −m) = (d1 + d2)m− (r − d1/2)(k −m).

For r = d1/2 the same relation (43) gives an order of n log n. For the remaining
case r < d1/2 an analogous argument gives

ℓ∑

k=m̃

n1,kn2,k ≍
ℓ∑

k=0

2d1k2(d1+d2)m−d1k−(d1/2−r)(ℓ−k) ≍ 2(d1+d2)m ≍ n.

This easily yields the upper bound of Theorem 2.4. �

5 lower bound

In this part, we present our approach to the lower bound. First, a relationship
between the Monte Carlo and the average case error is established.
Let ν be any probability measure with finite support in the unit ball X0 of X.
Recall the following notions of the average case setting. For N ∈ N and ϕ ∈ Φ,
let

cardavg(N, ν) :=
∫

X0

card(N(f))dν(f).

For n ∈ IN we set

eavg(S,N, ϕ, ν) :=
∫

X0

‖Sf − ϕ(N(f))‖dν(f)

and
eavg

n (S, ν) := inf {eavg(S,N, ϕ, ν) : cardavg(N, ν) ≤ n, ϕ ∈ Φ} .

The first step of our approach consists in reducing the Monte Carlo error to the
average error. This idea is due to Bakhvalov (1959). A proof of the following
lemma can be found, for example, in Heinrich (1998a).
lemma 5.1 Let ν be any probability measure on X0 with finite support. Then for
any n ∈ IN

emc
n (S) ≥

1

2
eavg
2n (S, ν).

For the construction of ν we introduce some additional notation. For m1, m2 ∈
IN let

I := {0, . . . , m1 − 1}d1 , J := {0, . . . , m2 − 1}d2 .

For i = (i1, . . . , id1
) ∈ I and j = (j1, . . . , jd2

) ∈ J , let the subcubes G1,i of G1 and
G2,j of G2 be defined by

G1,i :=
[
i1
m1

,
i1 + 1

m1

]
× . . .×

[
id1

m1

,
id1

+ 1

m1

]
,

G2,j :=
[
j1
m2

,
j1 + 1

m2

]
× . . .×

[
jd2

m2
,
jd2

+ 1

m2

]
.
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Moreover let si ∈ G1,i and tj ∈ G2,j be given by

si = (i1/m1, . . . , id1
/m1), tj = (j1/m1, . . . , jd2

/m2).

Let ψ1 and ψ2 be infinitely differentiable functions with support in G1 and G2,
respectively, such that

‖ψ1‖r = ‖ψ2‖r = 1

and
γ :=

∫

G2

ψ2(t)dt 6= 0.

Let γ1 := ‖ψ1‖. Cleary γ1 6= 0. For i ∈ I and j ∈ J we set

ψ1,i(s) := ψ1(m1(s− si)), ψ2,j(t) := ψ2(m2(t− tj))

and define ψij by

ψij(s, t) := min{m−r
1 , m−r

2 }ψ1,i(s)ψ2,j(t).

Then the following lemma can be shown easily.

lemma 5.2 Let λij , i ∈ I, j ∈ J be real numbers. Then the function f ,

f :=
∑

i∈I

∑

j∈J

λijψij

fulfills:
‖Sf‖ = |γ|γ1 min{m−r

1 , m−r
2 }m−d2

2 max
i∈I

∣∣∣
∑

j∈J

λij

∣∣∣.

lemma 5.3 Let n1, n2 ∈ IN and let εij, i = 1, . . . , n1, j = 1, . . . , n2 be indepen-
dent symmetric {−1, 1}–valued Bernoulli random variables, i. e. µ{εij = 1} =
µ{εij = −1} = 1/2. Then

E
(

max
1≤i≤n1

∣∣∣
n2∑

j=1

εij

∣∣∣
)
≍

(
n2 min(n2, log(n1 + 1))

)1/2

Proof. The upper bound n2 is obvious, while (n2 log(n1 + 1))1/2 follows from
Lemma 4.1.
For the lower bound, we first show

E
(

max
1≤i≤n1

∣∣∣
n2∑

j=1

εij

∣∣∣
)
≥ c(n2 log(n1 + 1))1/2, for 1 ≤ n1 ≤ 2n2, (44)

with some constant c > 0.A proof of (44) for the special case n1 = n2 can be found
on page 120 of Ledoux and Talagrand (1991). The argument immediately carries
over to our case. For the sake of completeness we sketch the proof. Relation (4.2)
of Ledoux and Talagrand (1991) states that there is a constant c ≥ 1 such that
for all n ∈ IN and t satisfying

c n1/2 ≤ t ≤ c−1n (45)
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µ
{ n∑

j=1

εj > t
}
≥ exp(−c t2/n), (46)

where εj, j = 1, . . . , n are independent symmetric Bernoulli random variables
as above (an elementary proof of this relation is given right there: Ledoux and
Talagrand, 1991, p. 90). We choose n = n2 and t = (c−2(lnn1)n2)

1/2. Then
exp(c4) ≤ n1 ≤ 2n2 implies (45). Consequently, (46) gives for each i

µ
{ n2∑

j=1

εij >
(
c−2(lnn1)n2

)1/2}
≥

( 1

n1

)1/c
≥

1

n1
.

By independence

µ
{

max
1≤i≤n1

n2∑

j=1

εij > (c−2(lnn1)n2)
1/2

}
≥ 1 − (1 −

1

n1
)n1 ≥ 1 − e−1.

This proves (44) and hence the lemma for 1 ≤ n1 ≤ 2n2 . If n1 > 2n2 , we apply
statement (44) with ñ1 = 2n2 and get

E
(

max
1≤i≤n1

∣∣∣
n2∑

j=1

εij

∣∣∣
)
≥ E

(
max

1≤i≤2n2

∣∣∣
n2∑

j=1

εij

∣∣∣
)
≍ n2. �

proposition 5.1

emc
n (S) �

{
n−(2r+d2)/2(d1+d2)(logn)1/2, if r ≥ d1/2
n−r/d1(logn)r/d1 else.

(47)

Proof. Let n ∈ IN be arbitrary. Fix m1, m2 ∈ IN (to be chosen later) in such a
way that

md1

1 m
d2

2 ≥ 4n. (48)

Let the index sets I, J and the the functions ψij , i ∈ I, j ∈ J be as introduced
above. Let εij, i ∈ I, j ∈ J be independent, symmetric Bernoulli random
variables with values in {−1, 1}, defined on some probability space (Ω,Σ, µ).
Let

X1 :=
{
f =

∑

i∈I

∑

j∈J

αijψij : αij = ±1
}
. (49)

By the construction of ψij , X1 is a subset of the unit ball X0. Let now ν denote
the uniform distribution on X1. Clearly, ν is the distribution of

∑

i∈I

∑

j∈J

εij(ω)ψij.

We start by applying Lemma 5.1 and estimate the quantity eavg
n (S, ν) from below.

Let N be such that cardavg(N, ν) ≤ n. Then for any algorithm ϕ ∈ Φ we have

eavg(S,N, ϕ, ν) :=
∫

X1

‖Sf − ϕ(N(f))‖dν(f).
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Denote by ν( · |a) the conditional measure defined by the condition N(f) = a,
with support in N−1(a) ∩X1. Then

eavg(S,N, ϕ, ν) =
∫

N(X1)

∫

N−1(a)

‖Sf − ϕ(N(f))‖dν(f |a)dν̃(a), (50)

where ν̃ denotes the measure, which is induced by ν on N(X1), i.e. ν̃ = ν ◦N−1.
Let a ∈ N(X1) be some fixed standard information. Then there exists some set

Za := {(s1, t1), . . . , (sn̂, tn̂)}

with (si, ti) ∈ G1 ×G2 for all i = 1, . . . , n̂, such for all f ∈ X0 with N(f) = a

a = (f(s1, t1), . . . , f(sn̂, tn̂)).

For fixed a, let the set Ka be defined by

Ka := {(i, j) ∈ I × J : Za ∩ (G1,i ×G2,j)
0 = ∅}. (51)

This means that no element of the set Za lies in the interior of G1,i ×G2,j for all
(i, j) ∈ Ka. For a fixed f ∈ X1 as defined in (49) let

f̃a :=
∑

(i,j)∈Ka

αij ψij , f̄a := f − f̃a.

Then
f = f̃a + f̄a, and N(−f̃a + f̄a) = a.

ν( · |a) is invariant with respect to the mapping f̃a + f̄a → −f̃a + f̄a. Therefore

∫

N−1(a)

‖Sf − ϕ(N(f))‖dν(f |a)=
1

2

∫

N−1(a)

∑

β=±1

‖S(βf̃a + f̄a) − ϕ(N(f̄a))‖dν(f |a)

≥
1

2

∫

N−1(a)

‖S(f̃a + f̄a) − S(−f̃a + f̄a)‖dν(f |a)

=
∫

N−1(a)

‖S(f̃a)‖dν(f |a).

Hence
eavg(S,N, ϕ, ν) ≥

∫

N(X1)

∫

N−1(a)

‖S(f̃a)‖dν(f |a)dν̃(a).

Let now X̂1 be defined by

X̂1 := {f ∈ X1 : card(N(f)) ≤ 2n}.

As we deal only with those N with cardavg(N, ν) ≤ n,

n ≥
∫

X1\X̂1

card(N(f)) dν(f) ≥ 2ν(X1 \ X̂1)n.
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Therefore ν(X̂1) ≥ 1/2. From this we deduce

eavg(S,N, ϕ, ν) ≥
1

2
inf

a∈N(X̂1)

∫

N−1(a)

‖S(f̃a)‖dν(f |a). (52)

By the construction of f̃a, we have
∫

N−1(a)

‖S(f̃a)‖dν(f |a) = E
∥∥∥S

( ∑

(i,j)∈Ka

εijψij

)∥∥∥.

Combining this with (52) and Lemma 5.2, we get

eavg(S,N, ϕ, ν) ≥
1

2
|γ|γ1 min (m−r

1 , m−r
2 )m−d2

2 min
a∈N(X̂1)

E
(

max
i∈I

|
∑

j∈Ka,i

εij|
)
, (53)

with
Ka,i := {j ∈ J : (i, j) ∈ Ka}.

Observe that for a ∈ N(X̂1), card(a) ≤ 2n, and hence, by the construction of Ka

in (51),
|Ka| ≥ md1

1 m
d2

2 − 2n. (54)

Let
Ia := {i ∈ I : |Ka,i| ≥ md2

2 /4}. (55)

Then
|Ia| ≥ md1

1 /4. (56)

In fact, assuming the opposite, i.e. |Ia| < md1

1 /4, we have

|Ka| =
∑

i∈I

|Ka,i| =
∑

i∈Ia

|Ka,i| +
∑

i6∈Ia

|Ka,i| <
1

2
md1

1 m
d2

2 .

But this is a contradiction to (54) and (48), which proves (56). Now we set

n1 =
⌈
md1

1 /4
⌉
, n2 =

⌈
md2

2 /4
⌉
.

An elementary direct argument or the use of the contraction principle (see The-
orem 4.4 of Ledoux and Talagrand, 1991) yields

E max
i∈I

∣∣∣
∑

j∈Ka,i

εij

∣∣∣ ≥ E max
1≤ĩ≤n1

∣∣∣
n2∑

j̃=1

εĩj̃

∣∣∣, (57)

where εĩj̃ (̃i = 1, . . . , n1, j̃ = 1, . . . , n2) are again independent symmetric Bernoulli
random variables. Since N was arbitrary, (53), (57) and Lemma 5.3 imply

eavg
n (S, ν) � min (m−r

1 , m−r
2 )m−d2

2

(
n2 min(n2, log(n1 + 1))

)1/2

≍ min (m−r
1 , m−r

2 )m
−d2/2
2 min

(
md2

2 , log(m1 + 1)
)1/2

. (58)

We treat the cases r ≥ d1/2 and r < d1/2 separately.
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1. Case r ≥ d1/2:

We choose m1 = m2 = 2⌈n1/(d1+d2)⌉. Then (48) is satisfied. Moreover

min
(
md2

2 , log(m1 + 1)
)
≍ log n,

which gives together with (58)

eavg
n (S, ν) � n−r/(d1+d2)−d2/(2(d1+d2))( log n)1/2,

completing the proof in this case.

2. Case r < d1/2:

Here we set m1 = 2⌈n1/d1( logn)−1/d1⌉ and m2 = 2⌈( logn)1/d2⌉. Again
(48) is satisfied. Furthermore,

min (m−r
1 , m−r

2 ) ≍ n−r/d1( log n)r/d1

and
min

(
md2

2 , log(m1 + 1)
)
≍ log n.

Combining this with (58), we obtain

eavg
n (S, ν) � n−r/d1( log n)r/d1 ,

ending the proof of Proposition 5.1 and of Theorem 2.4. �

6 Comments

In the sequel we want to illustrate the Monte Carlo rates obtained, their relation
to the parameter constellation and to the deterministic case. Let us first mention
the following view on parametric integration: Let d := d1 + d2. Then we want
to integrate functions on the d-dimensional unit cube partially, that means, we
integrate over d2 dimensions and leave d1 dimensions ”untouched”. Let us now
try to analyze the dependence on d1.

Clearly the deterministic exponent of decay, r/d, is independent of d1. The
Monte Carlo exponent for d1 = 0 is r/d + 1/2, the well-known rate for inte-
gration, while for d1 = d it is r/d, the rate of pure approximation. Now let
us consider the Monte Carlo exponent α(d1) of the intermediate situation (we
neglect logarithms). Let us introduce

α1(d1) =
r

d
+
d− d1

2d
(59)

and
α2(d1) =

r

d1
. (60)
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For all d1 the following relation between (59) and (60) is readily checked

α1(d1) = α2(d1) +
(d− d1)(d1 − 2r)

2dd1
. (61)

By Theorem 2.4 we have α(d1) = α1(d1) for d1 ≤ 2r and α(d1) = α2(d1)
for d1 > 2r. Taking into account (61), this means that, in fact, α(d1) =
min(α1(d1), α2(d1)). The behavior is illustrated in Figure 1.

Figure 1: Exponent of convergence as a function of d1

...........................................................................................................................................................................................................................................................................................................................................

6

-
0 2r

2r < d

d
d1

r
d

r
d

+ 1
2

α

.................................................

.................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ...............

.................. .................. α1(d1)

.................................................................................................................................................................................................................................................................................................................................

6

-
0

2r ≥ d

d
d1

r
d

r
d

+ 1
2

α

.................................................

......... deterministic rate

..................................................................................................................................................................................................................................................................................................................................................................................

......................................................... Monte Carlo rate

.........................................................................................................................................................................................................

................................................ α2(d1)

Note that the rate r/d1 (for d1 > 2r), in other words, the error n−r/d1 , is the
well-known one of approximation of r-smooth functions in d1 dimensions using
n points. However, our task is much more complicated – before we approximate
the solution function using n node points we first have to determine the values in
these points, which amounts to the approximate computation of n integrals over
the d2-dimensional cube. So the result is far from being trivial. It shows that (in
the Monte Carlo setting) integration over the remaining variables can be done at
the same cost as just d1-dimensional approximation (up to a loss of a logarithmic
factor).
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