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Abstract

We present a complexity analysis for strong approximation of Banach
space valued and parameter dependent scalar stochastic Itô integration,
driven by a Wiener process. Both definite and indefinite integration are
considered. We analyze the Banach space valued version of the Euler-
Maruyama scheme. Based on these results, we define a multilevel algorithm
for the parameter dependent stochastic integration problem and show its
order optimality for various input classes.

1 Introduction

The complexity of stochastic integration was first investigated in [22]. The au-
thors consider the problem of approximating stochastic Itô integrals of the form∫ 1

0
f(t,W (t))dW (t), where (W (t))t∈[0,1], W (t) = W (t, ω), denotes a standard

Wiener process on a probability space (Ω,Σ,P). They studied the complexity
of the problem, which depends on the smoothness of the integration function
f : [0, 1] × R → R. For this purpose, they analyzed the Milstein scheme and
provided a matching lower bound for certain problem classes. Moreover, they
analyzed the Euler-Maruyama scheme and conjectured its order optimality (for
certain problem classes). This conjecture was later proved to be true in [10]. The
results are based on the assumption that standard information is available, i.e.,
evaluations of f and W (t). The case of linear information was investigated in
[17].

Extending the analysis of [22], we study the complexity of definite and indef-
inite stochastic Itô integration of random functions f : [0, 1] × Ω → X, with X
a Banach space, thus, with f(t) = f(t, ω) we are interested in the approximation
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of ∫ t

0

f(τ)dW (τ)

for all t ∈ [0, 1] simultaneously in the indefinite case, and respectively for t =
1 in the definite case. Stochastic integration in X is closely connected to a
geometric property of X, namely, the martingale type 2. We go beyond this
class by considering functions Tf which are images of functions with values in
some Banach space Y under an operator T : Y → X of martingale type 2. This
is needed for our second goal in this paper: the investigation of stochastic Itô
integration of parameter dependent scalar valued functions f : Q×[0, 1]×Ω→ R,∫ t

0

f(s, τ)dW (τ) (s ∈ Q, t ∈ [0, 1]),

where f(s, τ) = f(s, τ, ω) and Q = [0, 1]d is the parameter domain.
The complexity of Banach space valued (non-stochastic) integration was first

considered in [2], the complexity of (non-stochastic) parametric integration has
been treated in [9],[7],[8], and also in [2]. It turned out that the consideration
of Banach space valued algorithms can be crucial for the analysis of paramet-
ric problems. Here we follow the same line to derive algorithms for parametric
stochastic integration and state complexity results. We define and analyze the
Banach space valued versions of the Euler-Maruyama scheme. We obtain the
same order of convergence as for the scalar valued case.

A similar situation occurs in the case of parameter dependent stochastic inte-
gration, where two cases have to be distinguished. In the case of higher param-
eter smoothness we obtain the same rate (up to logarithmic factors) as for non-
parametric scalar stochastic integration. In the case of lower parameter smooth-
ness we obtain the rate (again up to logarithmic factors) of approximation of
functions depending only on the parameter – in other words, a rate as if we had
full knowledge on the integrals. These improvements are achieved due to the
multilevel structure of the algorithms.

The multilevel technique, used here, was first introduced for the complexity
analysis in the randomized setting of problems such as global solution of inte-
gral equations in [6] and parametric integration in [9], see also [7],[8]. Later
such multilevel schemes were used for the approximation of quadrature problems
of stochastic differential equations, see [5]. Our general multilevel algorithm is
a combination of a Banach space valued algorithm and common interpolation
operators connected via multilevel techniques.

We also prove lower bounds which are matching with the upper bounds re-
sulting from the error estimates, thus showing the optimality of the algorithms
and establishing the complexity of the considered problems (in some cases up to
logarithmic factors).

The structure of the paper is as follows: In the second section, we briefly
introduce the needed results from probability theory and stochastic integration
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in Banach spaces. In the third section, we analyze the Euler-Maruyama scheme
for Banach space valued stochastic integrals, while in Section 4, we develop a
general multilevel scheme in Banach spaces which is similar to the one introduced
in [2] and [3]. We apply this algorithm to the scalar parametric case in Section
5 and finally, in Section 6, we present the complexity results for the previously
considered problems.

2 Preliminaries

2.1 Notation

Let N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }. Let X, Y be Banach spaces. The
closed unit ball of X is denoted by BX , the dual space by X∗, the identity
operator on X by IX , and the space of bounded linear operators from Y to
X by L (Y,X). Let d ∈ N. The space of continuous functions on a compact
set Q ⊂ Rd with values in X is denoted by C(Q,X) and is equipped with the
supremum norm. Furthermore, if Q is the closure of an open bounded set, then
for r ∈ N, Cr(Q,X) stands for the space of all functions f : Q → X which
are r-times continuously differentiable (with respect to the norm topology of X)
in the interior of Q and which together with their derivatives up to order r are
bounded and possess continuous extensions to all of Q. This space is equipped
with the norm

‖f‖Cr(Q,X) = sup
|α|≤r, s∈Q

∥∥∥∥∂|α|f(s)

∂sα

∥∥∥∥
X

with α = (α1, . . . , αd) ∈ Nd
0 and |α| = |α1| + · · · + |αd|. If r = 0, we set

C0(Q,X) = C(Q,X). For 0 ≤ % ≤ 1 we let C %(Q,X) be the space of all
f ∈ C(Q,X) satisfying

‖f‖C %(Q,X) := max

(
‖f‖C(Q,X), sup

s 6=t∈Q
|s− t|−% ‖f(s)− f(t)‖X

)
<∞,

For 1 ≤ p < ∞ and (D,D , ν) an arbitrary measure space, Lp(D,D , ν,X) is
the space of (equivalence classes of) X-valued Bochner p-integrable functions on
D, equipped with the usual norm. Note that, by definition, each function in
Lp(D,D , ν,X) is, except for a set of ν-measure zero, the pointwise limit of a
sequence of simple functions. Consequently, for each f ∈ Lp(D,D , ν,X) there is
a separable subspace X0 of X such that f takes values in X0, except for a set of
ν-measure zero. If there is no ambiguity about (D,D , ν) we skip D and/or ν. If
X = R, we skip R in the notation above and write Cr(Q), C %(Q), Lp(D,D , ν)
etc.

Throughout the paper the same symbol c, c1, c2, . . . may denote different con-
stants, even in a sequence of relations. Moreover, for nonnegative reals (an)n∈N
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and (bn)n∈N we write an � bn if there are constants c > 0 and n0 ∈ N such that
for all n ≥ n0, an ≤ cbn. Furthermore, an � bn means that an � bn and bn � an.

Let Q = [0, 1]d. Next we introduce some interpolation operators on Q. For k ∈
N, let Γdk =

{
i
k

: 0 ≤ i ≤ k
}d

be the uniform d-dimensional grid of meshsize 1/k
in Q. For r,m ∈ N let P r,1

m ∈ L (C([0, 1])) be composite Lagrange interpolation
of degree r with respect to the partition of [0, 1] given by Γ1

m and

P r,d
m = ⊗dP r,1

m ∈ L (C([0, 1]d))

its d-fold tensor product. Let

P r,d
m f =

∑
s∈Γd

rm

f(s)ϕr,dm,s (f ∈ C(Q)) (1)

be the representation of P r,d
m with ϕr,dm,s ∈ C(Q) (s ∈ Γdrm),

ϕr,dm,s(s) = 1, ϕr,dm,s(t) = 0 (t ∈ Γdrm, t 6= s). (2)

The X-valued versions of the operators above are defined as

P r,d,X
m f =

∑
s∈Γd

rm

f(s)ϕr,dm,s (f ∈ C(Q,X)). (3)

We will consider P r,d,X
m also as an operator from `∞(Γdrm, X) to C(Q,X) in the

obvious way. There are constants c0, c1 > 0 such that for all Banach spaces X
and m ∈ N

‖P r,d,X
m ‖L (C(Q,X)) ≤ c0 (4)

‖Jr,X − P r,d,X
m Jr,X‖L (Cr(Q,X),C(Q,X)) ≤ c1m

−r, (5)

where Jr,X : Cr(Q,X) → C(Q,X) is the embedding. The scalar case is well-
known (see, e.g., [1], Th. 3.1.4). For the simple derivation of the Banach space
case from the scalar case we refer to [2], Section 2.

2.2 Stochastic integration in Banach spaces

We introduce some concepts from probability theory in Banach spaces needed in
the sequel. Let B(X) be the σ-algebra of Borel subsets of X, that is, the smallest
σ-algebra containing the norm-open sets. A sequence (ηi)

n
i=1 ⊂ L2(Ω,Σ,P, X)

is called an X-valued martingale difference sequence, if there is an X-valued
martingale (Mi)

n
i=0 ⊂ L2(Ω,Σ,P, X) with M0 ≡ 0 and ηi = Mi − Mi−1. The

martingale type 2 constant µ2(T ) of an operator T ∈ L (Y,X) is defined as the
smallest constant c > 0 such that for all probability spaces (Ω,Σ,P), all n ∈ N,
and martingale difference sequences (ηi)

n
i=1 ⊂ L2(Ω,Σ,P, Y ),

E
∥∥∥∥ n∑
i=1

Tηi

∥∥∥∥2

X

≤ c2

n∑
i=1

E‖ηi‖2
Y .
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We say that T has martingale type 2 if µ2(T ) < ∞. The space of all operators
from Y to X of martingale type 2 is denoted by M2(Y,X). Clearly, ‖T‖ ≤ µ2(T ),
and endowed with the µ2-norm, M2(Y,X) is a Banach space. If X = Y and
T = IX , we just write µ2(X) instead of µ2(IX), which is called the martingale
type 2 constant of the space X. Correspondingly, we say that X has martingale
type 2 if µ2(X) <∞.

All finite dimensional Banach spaces have martingale type 2. If X is 2-smooth,
then it has martingale type 2 (see Pisier [13] and [14], ch. 6, for notation and this
result). It follows that for 2 ≤ p < ∞ the space Lp(D,D , ν), with (D,D , ν) an
arbitrary measure space, has martingale type 2, see also the proof of Lemma 2.1
below.

For our analysis we need the following result, essentially contained in [15].
For the sake of completeness, and since we did not find a direct reference for the
estimate (6), we include the short proof.

Lemma 2.1. There is a constant c > 0 such that for all n ∈ N, n ≥ 2

µ2(`n∞) ≤ c
√

log n. (6)

Proof. First we show that there is a constant c > 0 such that for all p with
2 ≤ p <∞ and all measure spaces (D,D , ν)

µ2(Lp(D,D , ν)) ≤ c
√
p. (7)

Let Mn, ηn be as above, with X = Lp(D,D , ν). We follow the lines of the proof
of Theorem 10.22 in [16] (see also [15], Theorem 4.21). We have(

1

2

(
‖Mn−1 + ηn‖2

Lp
+ ‖Mn−1 − ηn‖2

Lp

))1/2

≤
(

1

2

(
‖Mn−1 + ηn‖pLp

+ ‖Mn−1 − ηn‖pLp

))1/p

≤
(
‖Mn−1‖2

Lp
+ (p− 1)‖ηn‖2

Lp

)1/2

,

where the latter estimate follows from (10.35) of Lemma 10.34 in [16] by duality,
or use relation (10.37) there, directly (see, respectively, (4.34), Lemma 4.32, and
(4.36) in [15]). We conclude

1

2

(
E‖Mn‖2

Lp
+ E ‖Mn−1‖2

Lp

)
≤ 1

2

(
E‖Mn‖2

Lp
+ E ‖Mn−1 − ηn‖2

Lp

)
≤ E‖Mn−1‖2

Lp
+ (p− 1)E‖ηn‖2

Lp
,

thus
E‖Mn‖2

Lp
≤ E‖Mn−1‖2

Lp
+ 2(p− 1)E‖ηn‖2

Lp
.
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By recursion

E‖Mn‖2
Lp
≤ 2(p− 1)

n∑
i=1

E‖ηi‖2
Lp
,

which shows (7). Now let n ∈ N, n ≥ 4 (for n < 4 relation (6) is a consequence
of the elementary scalar case µ2(R) = 1) and put p = log2 n. Let J : `n∞ 7→ `np be
the identity. Then

‖J‖ = n1/p = 2, ‖J−1‖ = 1.

This together with (7) shows (6).

Now we introduce the needed notions of Banach space valued stochastic inte-
grals. Let (Ω,Σ,P) be a probability space, F = (Ft)0≤t<∞, Ft ⊆ Σ a filtration,
let W = (W (t))0≤t<∞, W (t) = W (t, ω) be a Wiener process on (Ω,Σ,P), adapted
to F and such that for 0 ≤ t1 ≤ t2 the increments W (t2)−W (t1) are independent
of Ft1 . Moreover, we assume that

Ω0 := {ω : W ( · , ω) is continuous} ∈ Σ, P(Ω0) = 1. (8)

Let 0 ≤ a < b < ∞ and let BF denote the σ-algebra of progressively
measurable subsets of [a, b]×Ω, that is, all subsets B with the property that for
each τ ∈ [a, b]

B ∩ [a, τ ]× Ω ∈ B([a, τ ])×Fτ (τ ∈ [a, b])

Let mes denote the Lebesgue measure on [a, b]. We consider the space L2([a, b]×
Ω,BF ,mes× P, X), which consists of (equivalence classes) of square-integrable
progressively measurable functions f : [a, b] × Ω → X, meaning that f |[a,τ ]×Ω is
B([a, τ ])×Fτ -to-B(X) measurable for all τ ∈ [a, b].

A function g : [a, b]×Ω→ X is called a progressively measurable step function,
if there are k ∈ N, points (τi)

k
i=0 ⊂ [a, b], τ0 < · · · < τk, and gi ∈ L2(Ω,Fτi , X)

such that

g(t) =
k−1∑
i=0

giχ(τi,τi+1](t) (t ∈ [a, b]). (9)

For such a function we define the stochastic integral∫ b

a

g(t)dW (t) ∈ L2(Ω, X)

by setting ∫ b

a

g(t)dW (t) =
k−1∑
i=0

gi(W (τi+1)−W (τi)). (10)

Following Dettweiler [4], we say that a function f ∈ L2([a, b] × Ω,BF , X) is
stochastically integrable with respect to W , if there is a sequence of progressively
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measurable step functions fn such that

lim
n→∞

sup
z∈BX∗

‖〈f, z〉 − 〈fn, z〉‖L2([a,b]×Ω) = 0,

lim
m,n→∞

∥∥∥∥∫ b

a

fm(t)dW (t)−
∫ b

a

fn(t)dW (t)

∥∥∥∥
L2(Ω,X)

= 0.

The space of all such functions f is denoted by L2([a, b] × Ω,BF ,W,X). The
stochastic integral of f ∈ L2([a, b]×Ω,BF ,W,X) is then defined as the limit in
L2(Ω, X) of the integrals of the functions fn,∫ b

a

f(t)dW (t) = lim
n→∞

∫ b

a

fn(t)dW (t).

It follows from the definition that if z ∈ X∗, then〈∫ b

a

f(t)dW (t), z

〉
=

∫ b

a

〈f(t), z〉 dW (t). (11)

Note that X is of martingale type 2, if and only if

L2([a, b]× Ω,BF , X) ⊂ L2([a, b]× Ω,BF ,W,X),

see [4]. For our applications to parametric stochastic integration the class of
spaces of martingale type 2 is too narrow, since (as in [9] and [2]) we want to
study the problem with error measured in the maximum norm. That is, as target
spaces we consider spaces of continuous functions – which are not of martingale
type 2. We therefore use an operator approach, also developed in [4], see section
5 there.

Let X, Y be Banach spaces, let T ∈ M2(Y,X), and let f ∈ L2([a, b] ×
Ω,BF , Y ). We first show that Tf ∈ L2([a, b] × Ω,BF ,W,X). Indeed, let
g ∈ L2([a, b] × Ω, Y ) be a progressively measurable step function with represen-
tation (9). Then we have

∥∥∥∥∫ b

a

Tg(t)dW (t)

∥∥∥∥
L2(Ω,X)

=

E

∥∥∥∥∥
k−1∑
i=0

Tgi(W (τi+1)−W (τi))

∥∥∥∥∥
2

X

1/2

≤ µ2(T )

(
E

k−1∑
i=0

‖gi‖2
Y (W (τi+1)−W (τi))

2

)1/2

= µ2(T )‖g‖L2([a,b]×Ω,Y ). (12)

Now let (fn)∞n=1 ⊂ L2([a, b] × Ω, Y ) be a sequence of progressively measurable
step functions such that

lim
n→∞

‖f − fn‖L2([a,b]×Ω,Y ) = 0. (13)
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One could take, e.g.,

fn(t, ω) = n
n−1∑
i=1

∫ ti

ti−1

f(τ, ω)dτ χ(ti,ti+1](t) (14)

with ti = a+ i(b−a)
n

. It follows that

lim
n→∞

sup
z∈BX∗

‖〈Tf, z〉 − 〈Tfn, z〉‖L2([a,b]×Ω) = 0

and from (12)

lim
m,n→∞

∥∥∥∥∫ b

a

Tfm(t)dW (t)−
∫ b

a

Tfn(t)dW (t)

∥∥∥∥
L2(Ω,X)

= 0.

Thus, Tf ∈ L2([a, b]× Ω,BF ,W,X) and∫ b

a

Tf(t)dW (t) = lim
n→∞

∫ b

a

Tfn(t)dW (t), (15)

in the norm of L2(Ω, X). Moreover, applying (12) to fn and passing to the limit
gives (

E
∥∥∥∥∫ b

a

Tf(t)dW (t)

∥∥∥∥2

X

)1/2

≤ µ2(T )

(∫ b

a

E ‖f(t)‖2
Y dt

)1/2

. (16)

It follows from (15) that the indefinite stochastic integral, that is, the stochastic
integral with variable upper limit(∫ t

a

Tf(τ)dW (τ)

)
t∈[a,b]

(17)

is a martingale. We claim that there is a version of (17) whose trajectories are
continuous, that is, in C([a, b], X). Indeed, let fn : [a, b] × Ω → X be as above,
see (13),

fn(t, ω) =
kn−1∑
i=0

fni(ω)χ(τni,τn,i+1](t) (t ∈ [a, b], ω ∈ Ω),

with fni ∈ L2(Ω, X). We can assume without loss of generality that τn,0 = a,
τn,n = b for all n. Define a function hn : [a, b]× Ω→ X by setting

hn(t, ω) = 0 if t = 0 or ω 6∈ Ω0, (18)

where Ω0 was defined in (8), and for ω ∈ Ω0, t ∈ (τnj, τn,j+1] (j = 0, . . . , kn − 1)

hn(t, ω) =
∑
i<j

Tfni(ω)(W (τn,i+1, ω)−W (τni, ω))

+Tfnj(ω)(W (t, ω)−W (τnj, ω)). (19)
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By (8), hn( · , ω) ∈ C([a, b], X) for all ω ∈ Ω. We define a function

h̄n : Ω→ C([a, b], X), h̄n(ω) = hn( · , ω).

Then h̄n ∈ L2(Ω, C([a, b], X)). For t ∈ [a, b] let

δt ∈ L (C([a, b], X), X), δtg = g(t).

We have

δth̄n =

∫ t

a

Tfn(τ)dW (τ). (20)

Since hn(t, ω) is a continuous martingale, we obtain by the Kolmogorov-Doob
inequality and (16),∥∥h̄m − h̄n∥∥2

L2(Ω,C([a,b],X))

= E sup
t∈[a,b]

‖hm(t, ω)− hn(t, ω)‖2
X ≤ 4E ‖hm(b, ω)− hn(b, ω)‖2

X

= 4E
∥∥∥∥∫ b

a

Tfm(τ)dW (τ)−
∫ b

a

Tfn(τ)dW (τ)

∥∥∥∥2

X

≤ 4µ2(T ) ‖fm − fn‖L2([a,b]×Ω,Y ) → 0 (21)

as m,n→∞. Hence, there is a function h̄ ∈ L2(Ω, C([a, b], X)) with∥∥h̄− h̄n∥∥L2(Ω,C([a,b],X))
→ 0.

It follows that ∥∥δth̄− δth̄n∥∥L2(Ω,X)
→ 0,

which together with (15) and (20) implies

δth̄ =

∫ t

a

Tf(τ)dW (τ),

with equality considered in L2(Ω, X). It follows that the function δth̄(ω) is the
desired continuous version, which proves the claim.

We define for ω ∈ Ω
ST (f, ω) = h̄(ω). (22)

This way we obtain for each T ∈M2(Y,X) a mapping

ST : L2([a, b]× Ω,BF , Y )× Ω→ C([a, b], X) (23)

such that for each f ∈ L2([a, b]× Ω,BF , Y ) we have

ST (f, · ) ∈ L2(Ω, C([a, b], X)) (24)
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and for each t ∈ [a, b](
ST (f, ω)

)
(t) =

(∫ t

a

Tf(τ)dW (τ)

)
(ω) (P-a.s.). (25)

Using the Kolmogorov-Doob inequality once more, it follows that(
E sup

t∈[a,b]

∥∥(ST (f, ω)
)

(t)
∥∥2

X

)1/2

≤ 2

(
E
∥∥∥∥∫ b

a

Tf(τ)dW (τ)

∥∥∥∥2

X

)1/2

≤ 2µ2(T )

(∫ b

a

E ‖f(τ)‖2
Y dτ

)1/2

. (26)

We also consider the respective mapping for definite stochastic integration

ST1 : L2([a, b]× Ω,BF , Y )× Ω→ X, (27)

ST1 (f, ω) = (ST (f, ω))(b), (28)

which has the analogous properties

ST1 (f, · ) ∈ L2(Ω, X) (29)

and

ST1 (f, ω) =

(∫ b

a

Tf(τ)dW (τ)

)
(ω) (P-a.s.). (30)

Finally we note the following. For T, T1, T2 ∈ M2(Y,X), f ∈ L2([a, b] ×
Ω,BF , Y ), and γ1, γ2 ∈ R we have

Sγ1T1+γ2T2(f, ω) = γ1S
T1(f, ω) + γ2S

T2(f, ω) (P-a.s.), (31)

and for Banach spaces X1, Y1, operators U ∈ L (Y1, Y ), V ∈ L (X,X1), f ∈
L2([a, b]× Ω,BF , Y1)

SV TU(f, ω) = V ST (Uf, ω) (P-a.s.). (32)

Indeed, let us verify (32), the proof of (31) is analogous. From (25) we conclude
for each t ∈ [a, b](
SV TU(f, ω)

)
(t) =

(∫ t

a

V TUf(τ)dW (τ)

)
(ω)

= V

(∫ t

a

TUf(τ)dW (τ)

)
(ω) = V

(
ST (Uf, ω)

)
(t) (P-a.s.).

This, in turn, implies that P-almost surely the following holds(
SV TU(f, ω)

)
(t) = V

(
ST (Uf, ω)

)
(t) (t ∈ [a, b] ∩Q), (33)

where Q stands for the set of rationals. But then continuity implies that (33)
holds for all t ∈ [a, b], which yields (32).

The respective statements (31) and (32) also hold for S1, which follows by
setting t = 1.



11

3 Approximation of Banach space valued

stochastic integrals

Let X, Y be Banach spaces, T ∈M2(Y,X), 0 ≤ % ≤ 1, and κ > 0. Let F %([0, 1]×
Ω, Y ;κ) be the set of all functions f ∈ L2([0, 1]× Ω,BF , Y ) such that(

E ‖f(0, ω)‖2
Y

)1/2 ≤ κ, (34)(
E ‖f(t, ω)− f(t′, ω)‖2

Y

)1/2 ≤ κ|t− t′|% (t, t′ ∈ [0, 1]). (35)

Moreover, let 2 < q < ∞ and let F %
q ([0, 1] × Ω, Y ;κ) be the subset of all f ∈

F %([0, 1]× Ω, Y ;κ) such that for all finite subsets M ⊂ [0, 1](
E max

t∈M
‖f(t, ω)‖qY

)1/q

≤ κ. (36)

We want to approximate the operators of indefinite and definite stochastic
integration (22–30), with a = 0, b = 1, which we consider here as acting on
F %([0, 1]× Ω, Y ;κ), thus

ST : F %([0, 1]× Ω, Y ;κ)× Ω→ C([0, 1], X), (37)

ST1 : F %([0, 1]× Ω, Y ;κ)× Ω→ X. (38)

Let n ∈ N and tk = k/n (k = 0, . . . , n). We set z0(ω) = 0, use the Euler-
Maruyama scheme

zk+1(ω) = zk(ω) + f(tk, ω)(W (tk+1, ω)−W (tk, ω)) (k = 0, . . . , n− 1),

and define
An(f, ω) = z ∈ C([0, 1], Y ),

where for t ∈ [tk, tk+1], 0 ≤ k ≤ n− 1

z(t, ω) = zk(ω) + n(t− tk)(zk+1(ω)− zk(ω))

= zk(ω) + n(t− tk)f(tk, ω)(W (tk+1, ω)−W (tk, ω)). (39)

From (3) and (39) we obtain

An(f, ω) = P 1,1,Y
n (zk(ω))nk=0

= P 1,1,Y
n

(
k−1∑
j=0

f(tj, ω)(W (tj+1, ω)−W (tj, ω))

)n

k=0

=
n∑
k=0

(
k−1∑
j=0

f(tj, ω)(W (tj+1, ω)−W (tj, ω))

)
ϕ1,1
n,tk

, (40)
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with ϕ1,1
n,tk

being the usual hat functions corresponding to the grid Γ1
n = {tk : 0 ≤

k ≤ n}, compare (2).
For the case of definite integration we set

An,1(f, ω) = (An(f, ω))(1) =
n−1∑
j=0

f(tj, ω)(W (tj+1, ω)−W (tj, ω)). (41)

Proposition 3.1. Let 0 ≤ % ≤ 1, 2 < q < ∞, κ > 0. Then there are constants
c1, c2 > 0 such that for all X, Y, T as above and all f ∈ F %([0, 1]× Ω, Y ;κ)(

E ‖ST1 (f, ω)− TAn,1(f, ω)‖2
X

)1/2 ≤ c1µ2(T )n−%. (42)

Moreover, if f ∈ F %
q ([0, 1]× Ω, Y ;κ), then(
E ‖ST (f, ω)− TAn(f, ω)‖2

C([0,1],X)

)1/2

≤ c2µ2(T )n−% + c2‖T‖n−1/2(log n+ 1)1/2. (43)

Proof. Let f ∈ F %([0, 1]× Ω, Y ;κ). We set for t ∈ [0, 1], ω ∈ Ω

u(t, ω) =
(
ST (f, ω)

)
(t) (44)

uk(ω) = Tzk(ω), v(t, ω) = Tz(t, ω). (45)

Using (16) and the Kolmogorov-Doob inequality, we get from (25), (31), and (35),

E max
0≤k≤n

‖u(tk, ω)− uk(ω)‖2
X

= E max
1≤k≤n

∥∥∥∥∥
k−1∑
j=0

∫ tj+1

tj

T (f(t)− f(tj))dW (t)

∥∥∥∥∥
2

X

≤ 4E

∥∥∥∥∥
n−1∑
j=0

∫ tj+1

tj

T (f(t)− f(tj))dW (t)

∥∥∥∥∥
2

X

≤ 4µ2(T )2

n−1∑
j=0

∫ tj+1

tj

E ‖f(t)− f(tj)‖2
Y dt

≤ 4µ2(T )2n−2%, (46)

proving, in particular, (42). Now we assume f ∈ F %
q ([0, 1] × Ω, Y ;κ) and show

(43). Observe that by (39), (44), and (45), for t ∈ [tk, tk+1]

u(t, ω)− v(t, ω)

= u(tk, ω)− uk(ω) +
(
ST (f, ω)

)
(t)−

(
ST (f, ω)

)
(tk)

−n(t− tk)Tf(tk, ω)(W (tk+1, ω)−W (tk, ω))

= u(tk, ω)− uk(ω) + Φk(t, ω) + Tf(tk, ω)(W (t, ω)−Ψ(t, ω)),
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where we defined for t ∈ [tk, tk+1]

Φk(t, ω) =
(
ST (f, ω)

)
(t)−

(
ST (f, ω)

)
(tk)

−f(tk, ω)(W (t, ω)−W (tk, ω)) (47)

and for t ∈ [0, 1]

Ψ(t, ω) = W (tk, ω) + n(t− tk)(W (tk+1, ω)−W (tk, ω)). (48)

The process Φk(t, ω) is a continuous martingale on [tk, tk+1], while Ψ(t, ω) is the
piecewise linear interpolation of the scalar Wiener process. Consequently,(

E sup
0≤t≤1

‖u(t, ω)− v(t, ω)‖2
X

)1/2

≤
(
E max

0≤k≤n−1
‖u(tk, ω)− uk(ω)‖2

X

)1/2

+

(
E max

0≤k≤n−1
sup

tk≤t≤tk+1

‖Φk(t, ω)‖2
X

)1/2

+

(
E max

0≤k≤n−1
sup

tk≤t≤tk+1

‖Tf(tk, ω)(W (t, ω)−Ψ(t, ω))‖2
X

)1/2

. (49)

We have, using the Kolmogorov-Doob inequality, (16), (31), and (35),(
E max

0≤k≤n−1
sup

tk≤t≤tk+1

‖Φk(t, ω)‖2
X

)1/2

≤

(
n−1∑
k=0

E sup
tk≤t≤tk+1

‖Φk(t, ω)‖2
X

)1/2

≤ 2

(
n−1∑
k=0

E ‖Φk(tk+1, ω)‖2
X

)1/2

= 2

(
n−1∑
k=0

E
∥∥∥∥∫ tk+1

tk

T (f(τ)− f(tk))dW (τ)

∥∥∥∥2

X

)1/2

≤ 2µ2(T )

(
n−1∑
k=0

E
∫ tk+1

tk

‖f(τ)− f(tk)‖2
Y dτ

)1/2

≤ 2κµ2(T )n−%. (50)

We choose q1 in such a way that 1/2 = 1/q+ 1/q1 and use Hölder’s inequality to
conclude(

E max
0≤k≤n−1

sup
tk≤t≤tk+1

‖Tf(tk, ω)(W (t, ω)−Ψ(t, ω))‖2
X

)1/2

≤

(
E
(

max
0≤k≤n−1

‖Tf(tk, ω)‖X sup
0≤t≤1

|W (t, ω)−Ψ(t, ω)|
)2
)1/2

≤
(
E max

0≤k≤n−1
‖Tf(tk, ω)‖qX

)1/q (
E sup

0≤t≤1
|W (t, ω)−Ψ(t, ω)|q1

)1/q1

. (51)



14

It is well-known, see, e.g., [19], that the interpolation (48) of the scalar Wiener
process satisfies(

E sup
0≤t≤1

|W (t, ω)−Ψ(t, ω)|q1
)1/q1

≤ c0n
−1/2(log n+ 1)1/2. (52)

It follows from (51–52) and (36) that(
E max

0≤k≤n−1
sup

tk≤t≤tk+1

‖Tf(tk, ω)(W (t, ω)−Ψ(t, ω))‖2
X

)1/2

≤ c0κ‖T‖n−1/2(log n+ 1)1/2. (53)

Combining (49), (46), (50), and (53), we get (43).

Remark. Clearly, the case of stochastic integration of functions with values in a
space X of martingale type 2 is contained in the above, with Y = X and T = IX .

4 A general multilevel algorithm for Banach

space valued stochastic integrals

Let X, Y be Banach spaces, T, Tl ∈ M2(Y,X) (l ∈ N0), and let l1 ∈ N0,
n0, . . . , nl1 ∈ N. For f ∈ F %([0, 1] × Ω, Y ;κ), ω ∈ Ω we define an approxima-
tion A(f, ω) to S(f, ω) by

A(f, ω) =

l1∑
l=0

(Tl − Tl−1)Anl
(f, ω),

with the convention T−1 = 0, and analogously, an approximation A1(f, ω) to
S1(f, ω) in the definite case.

Proposition 4.1. Let 0 ≤ % ≤ 1, 2 < q < ∞, κ > 0. Then there are constants
c1, c2 > 0 such that for all X, Y, T, (Tl)

∞
l=0 as above, l1 ∈ N0, n0, . . . , nl1 ∈ N,

f ∈ F %([0, 1]× Ω, Y ;κ),(
E ‖ST1 (f, ω)−A1(f, ω)‖2

X

)1/2

≤ c1µ2(T − Tl1) + c1

l1∑
l=0

µ2(Tl − Tl−1)n−%l (54)

and, if f ∈ F %
q ([0, 1]× Ω, Y ;κ),(

E ‖ST (f, ω)−A(f, ω)‖2
C([0,1],X)

)1/2

≤ c2µ2(T − Tl1)

+c2

l1∑
l=0

(
µ2(Tl − Tl−1)n−%l + ‖Tl − Tl−1‖n−1/2

l (log nl + 1)1/2
)
. (55)
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Proof. We have, using (16), (25), (31–32), (34–35), and Proposition 3.1(
E ‖ST1 (f, ω)−A1(f, ω)‖2

X

)1/2

≤
(
E ‖ST1 (f, ω)− STl11 (f, ω)‖2

X

)1/2

+

l1∑
l=0

(
E ‖STl−Tl−1

1 (f, ω)− (Tl − Tl−1)Anl,1(f, ω)‖2
X

)1/2

≤ cµ2(T − Tl1) + κ

l1∑
l=0

µ2(Tl − Tl−1)n−%l .

This shows (54), relation (55) follows analogously, using (26) instead of (16).

In the following we estimate the type 2 constants of the operators involved
above by the type 2 constants of their image spaces. We set for l ∈ N0

Xl = clX(Tl(Y ))

Xl,l−1 = clX((Tl − Tl−1)(Y )),

where clX denotes the closure in the space X. Observe that X0,−1 = X0. Clearly,
we have

µ2(Tl − Tl−1) ≤ µ2(Xl,l−1)‖Tl − Tl−1‖L (Y,X). (56)

The following lemma is a direct consequence of (56). We omit the elementary
proof.

Lemma 4.2. Let T ∈ L (Y,X) and assume that

lim
m→∞

‖T − Tm‖L (Y,X) = 0.

Then

µ2(T ) ≤
∞∑
l=0

µ2(Xl,l−1)‖Tl − Tl−1‖L (Y,X),

µ2(T − Tl1) ≤
∞∑

l=l1+1

µ2(Xl,l−1)‖Tl − Tl−1‖L (Y,X).

5 Parametric scalar stochastic integrals

Let r, d ∈ N, Q = [0, 1]d, and let Lr0(Q× [0, 1]×Ω) denote the set of all functions
f : Q × [0, 1] × Ω → R such that for each s ∈ Q, f(s, t, ω) is progressively
measurable and

f( · , t, ω) ∈ Cr(Q) ((t, ω) ∈ [0, 1]× Ω).
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For f ∈ Lr0(Q× [0, 1]×Ω) we define a function f̄ : [0, 1]×Ω→ Cr(Q) by setting
for t ∈ [0, 1], and ω ∈ Ω,

f̄(t, ω) = f( · , t, ω). (57)

Lemma 5.1. If f ∈ Lr0(Q× [0, 1]× Ω), then f̄ is progressively measurable.

Proof. Let δαs0 ∈ C
r(Q)∗ be defined for α ∈ Nd

0, |α| ≤ r and s0 ∈ Q by

δαs0(g) =
∂|α|g

∂sα
(s0).

Let τ ∈ [0, 1]. We have for t ∈ [0, τ ], ω ∈ Ω

δ0
s0

(
f̄(t, ω)

)
= f(s0, t, ω).

It follows from the properties of f that δ0
s0
◦ f̄ , restricted to [0, τ ]×Ω is B([0, τ ])×

Fτ measurable. Now assume |α| = 1, with say α = ei, the i-th unit vector,
and let (βj)

∞
j=1 ⊂ R be any sequence with βj 6= 0, βj → 0 as j → ∞ and

(s0 + βjei)
∞
j=1 ⊂ Q. Then we have for t ∈ [0, τ ], ω ∈ Ω

δαs0
(
f̄(t, ω)

)
= lim

j→∞

δ0
s0+βjei

(
f̄(t, ω)

)
− δ0

s0

(
f̄(t, ω)

)
βj

,

hence δαs0 ◦ f̄ , restricted to [0, τ ] × Ω is B([0, τ ]) ×Fτ measurable. Continuing
this way, we obtain that the same holds for all α with |α| ≤ r.

Let g ∈ Cr(Q), n ∈ N, a > 0, and let (si)
∞
i=1 ⊂ Q be a dense sequence. Then{

(t, ω) ∈ [0, τ ]× Ω : f̄(t, ω) ∈ g + aBCr(Q)

}
=

⋂
i∈N,|α|≤r

{
(t, ω) ∈ [0, τ ]× Ω : δαsi ◦ f̄(t, ω) ∈ [δαsi(g)− a, δαsi(g) + a]

}
∈ B([0, τ ])×Fτ ,

which shows the progressive measurability of f̄ .

Now let 0 ≤ % ≤ 1, 2 < q < ∞ and let F r,%(Q × [0, 1] × Ω;κ) denote the set
of all functions f ∈ Lr0(Q× [0, 1]× Ω) such that(

E ‖f( · , 0, ω)‖2
Cr(Q)

)1/2

≤ κ, (58)(
E ‖f(· , t, ω)− f(· , t′, ω)‖2

Cr(Q)

)1/2

≤ κ|t− t′|% (t, t′ ∈ [0, 1]). (59)

Moreover, let F r,%
q (Q×[0, 1]×Ω;κ) be the subset of those f ∈ F r,%(Q×[0, 1]×Ω;κ)

which fulfill(
E max

t∈M
‖f( · , t, ω)‖qCr(Q)

)1/q

≤ κ (M ⊂ [0, 1], |M | <∞). (60)
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Next we connect the parametric setting to the Banach space valued setting.
We put

X = C(Q), Y = Cr(Q), T = J : Cr(Q)→ C(Q),

where J is the embedding map. For f ∈ F r,%(Q× [0, 1]×Ω;κ) let f̄ : [0, 1]×Ω→
Cr(Q) be given by (57). It follows from Lemma 5.1 and the assumptions (58–
60) that f̄ ∈ F %([0, 1] × Ω, Cr(Q);κ), and if f ∈ F r,%

q (Q × [0, 1] × Ω;κ), then
f̄ ∈ F %

q ([0, 1]× Ω, Cr(Q);κ). Next we set

Tl = P r,d
2l
J. (61)

Corresponding to the convention T−1 = 0 we define P r,d
2−1 = 0. We have

Xl−1 = P r,d
2l−1(C

r(Q)) ⊆ P r,d
2l

(Cr(Q)) = Xl,

and therefore also Xl,l−1 ⊆ Xl. Furthermore, it follows from (4) and the interpo-
lation property that∥∥∥P r,d

2l
: `dimXl
∞ → Xl

∥∥∥ ≤ c0,

∥∥∥∥(P r,d
2l

)−1

: Xl → `dimXl
∞

∥∥∥∥ = 1.

Hence, using Lemma 2.1, we obtain for l ≥ 1

µ2(Xl,l−1) ≤ µ2(Xl) ≤ c(l + 1)1/2.

Moreover, by (5),
∥∥J − P r,d

2l
J
∥∥

L (Cr(Q),C(Q))
→ 0 as l→∞ and∥∥P r,d

2l
J − P r,d

2l−1J
∥∥

L (Cr(Q),C(Q))
≤ c2−rl. (62)

Thus, Lemma 4.2 yields

µ2(J : Cr(Q)→ C(Q)) ≤
∞∑
l=0

µ2(Xl,l−1)
∥∥∥(P r,d

2l
− P r,d

2l−1

)
J
∥∥∥

L (Cr(Q),C(Q))

≤ c

∞∑
l=0

(l + 1)1/22−rl <∞ (63)

and
µ2

(
J − P r,d

2l1
J : Cr(Q)→ C(Q)

)
≤ c(l1 + 1)1/22−rl1 . (64)

It follows that SJ and SJ1 are well-defined. We have

SJ(f̄ , ω) ∈ C([0, 1], C(Q)) = C(Q× [0, 1]) (65)

(canonical identification) and

SJ1 (f̄ , ω) ∈ C(Q).
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Now we are ready to define the operators of indefinite and definite parametric
stochastic integration

S : F r,%(Q× [0, 1]× Ω;κ)× Ω → C(Q× [0, 1]) (66)

S1 : F r,%(Q× [0, 1]× Ω;κ)× Ω → C(Q) (67)

by setting
S (f, ω) = SJ(f̄ , ω), S1(f, ω) = SJ1 (f̄ , ω). (68)

It follows from (28), recalling also the canonical identification (65), that

(S1(f, ω))(s) =
(
SJ1 (f̄ , ω)

)
(s) =

((
SJ(f̄ , ω)

)
(1)
)

(s)

=
(
SJ(f̄ , ω)

)
(s, 1) = (S (f, ω))(s, 1) (s ∈ Q,ω ∈ Ω). (69)

Moreover, we conclude from (11) and (25) that for s ∈ Q, t ∈ [0, 1]

(S (f, · ))(s, t) =
〈
(SJ(f̄ , · ))(t), δs

〉
=

〈∫ t

0

Jf̄(τ)dW (τ), δs

〉
=

∫ t

0

〈
Jf̄(τ), δs

〉
dW (τ) =

∫ t

0

f(s, τ)dW (τ), (70)

with equality considered in L2(Ω). For t = 1 and s ∈ Q we get from (28) and
(70)

(S1(f, · ))(s) = (S (f, · ))(s, 1) =

∫ 1

0

f(s, τ)dW (τ) (71)

in L2(Ω). Thus, we obtained continuous versions of the processes given by para-
metric indefinite and definite stochastic integration.

Now we introduce the corresponding version of the general multilevel scheme
of Section 4. Fix l1 ∈ N0, n0, . . . , nl1 ∈ N, let f ∈ F r,%(Q × [0, 1] × Ω;κ) and
ω ∈ Ω. For the indefinite problem we set

A (f, ω) =

l1∑
l=0

(
P r,d

2l
− P r,d

2l−1

)
(Anl

(fs, ω))s∈Γd
r2l
, (72)

where fs is given by fs(t, ω) := f(s, t, ω) (t ∈ [0, 1], ω ∈ Ω) and P2−1 := 0. In the
definite case we put

A1(f, ω) =

l1∑
l=0

(
P r,d

2l
− P r,d

2l−1

)
(Anl,1(fs, ω))s∈Γd

r2l
. (73)

From (61) we obtain

A (f, ω) = A(f̄ , ω), A1(f, ω) = A1(f̄ , ω). (74)
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Taking into account (40), we can rewrite (72) as follows. For s ∈ Q, t ∈ [0, 1]

(A (f, ω))(s, t)

=

l1∑
l=0

nl∑
k=0

( ∑
σ∈Γd

r2l

ulk(σ, ω)ϕr,d
2l,σ

(s)−
∑

σ∈Γd
r2l−1

ul−1,k(σ, ω)ϕr,d
2l−1,σ

(s)

)
ϕ1,1

nl,
k
nl

(t)

with

ulk(σ, ω) =
k−1∑
j=0

f
(
σ,
j

nl
, ω
)(

W

(
j + 1

nl
, ω

)
−W

(
j

nl
, ω

))
(0 ≤ l ≤ l1)

and ulk ≡ 0 for l = −1. Similarly we obtain from (41) and (73), for s ∈ Q,

(A1(f, ω))(s)

=

l1∑
l=0

( ∑
σ∈Γd

r2l

ulnl
(σ, ω)ϕr,d

2l,σ
(s)−

∑
σ∈Γd

r2l−1

ul−1,nl
(σ, ω)ϕr,d

2l−1,σ
(s)

)
.

Let card(A), A = A1,A , denote the number of values of f and W used in
algorithm A (see Section 6 for a general definition in the context of complexity
theory). Then we have

card(A ) = card(A1) ≤ c

l1∑
l=0

nl2
dl. (75)

Proposition 5.2. Let r, d ∈ N, 0 ≤ % ≤ 1, 2 < q < ∞, κ > 0. Then there
are constants c1, c2 > 0 such that for all l1 ∈ N0, n0, . . . , nl1 ∈ N, f ∈ F r,%(Q ×
[0, 1]× Ω;κ), (

E ‖S1(f, ω)−A1(f, ω)‖2
C(Q)

)1/2

≤ c1(l1 + 1)1/22−rl1 + c1

l1∑
l=0

(l + 1)1/22−rln−%l (76)

and for all f ∈ F r,%
q (Q× [0, 1]× Ω;κ)(

E ‖S (f, ω)−A (f, ω)‖2
C(Q×[0,1])

)1/2

≤ c2(l1 + 1)1/22−rl1 + c2

l1∑
l=0

2−rl
(

(l + 1)1/2n−%l + n
−1/2
l (log nl + 1)1/2

)
. (77)

Proof. The result follows from Proposition 4.1 together with (61–64), (68), and
(74).
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Theorem 5.3. Let r, d ∈ N, 0 ≤ % ≤ 1, 2 < q < ∞. There are constants
c1−4 > 0 such that the following hold. For each n ∈ N with n ≥ 2 there is a
choice of l1 ∈ N0 and n0, . . . , nl1 ∈ N0 such that card(A1) ≤ c1n and

sup
f∈F r,%(Q×[0,1]×Ω;κ)

(E ‖S1(f, ω)−A1(f, ω)‖2
C(Q))

1/2

≤ c2


n−r/d(log n)1/2 if r/d < %,

n−r/d(log n)r/d+3/2 if r/d = %,

n−% if r/d > %.

(78)

Similarly, for each n ∈ N with n ≥ 2 there are l1 ∈ N0 and n0, . . . , nl1 ∈ N0 such
that card(A ) ≤ c3n and

sup
f∈F r,%

q (Q×[0,1]×Ω;κ)

(E ‖S (f, ω)−A (f, ω)‖2
C(Q×[0,1]))

1/2

≤ c4


n−r/d(log n)1/2 if r/d < min(%, 1/2)

n−r/d(log n)r/d+3/2 if r/d = min(%, 1/2),

n−1/2(log n)1/2 if r/d > min(%, 1/2), % ≥ 1/2,

n−% if r/d > min(%, 1/2), % < 1/2.

(79)

Proof. Let n ∈ N, n ≥ 2, and put

l1 =

⌈
log n

d

⌉
. (80)

Furthermore, let θ ∈ {0, 1}, δ0, δ1 ≥ 0, and set for l ∈ N0, l ≤ l1

nl =
⌈
(l1 + 1)−θ2d(l1−l)−δ0l−δ1(l1−l)

⌉
. (81)

We start with definite integration. From (81) we obtain

(l + 1)1/22−rln−%l ≤ (l + 1)1/2(l1 + 1)θ%2−rl−%d(l1−l)+%δ0l+%δ1(l1−l)

= (l1 + 1)θ%(l + 1)1/22−(r−%δ0)l−%(d−δ1)(l1−l). (82)

Combining (76) and (82), we conclude

E1 := sup
f∈F r,%(Q×[0,1]×Ω;κ)

(
E ‖S1(f, ω)−A1(f, ω)‖2

C(Q)

)1/2

≤ c(l1 + 1)1/22−rl1 + c(l1 + 1)θ%
l1∑
l=0

(l + 1)1/22−(r−%δ0)l−%(d−δ1)(l1−l). (83)

First we consider the case r/d < %. Here we set θ = δ0 = 0 and choose δ1 > 0 in
such a way that %(d− δ1) > r. Using (83), we obtain

E1 ≤ c(l1 + 1)1/22−rl1 + c

l1∑
l=0

(l + 1)1/22−rl−%(d−δ1)(l1−l)

≤ c(l1 + 1)1/22−rl1 ≤ cn−r/d(log n)1/2.
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If r/d = %, we let θ = 1, δ0 = δ1 = 0. Then (83) yields

E1 ≤ c(l1 + 1)1/22−rl1 + c(l1 + 1)r/d
l1∑
l=0

(l + 1)1/22−rl1

≤ c(l1 + 1)r/d+3/22−rl1 ≤ cn−r/d(log n)r/d+3/2.

Finally, if r/d > %, we set θ = δ1 = 0 and choose δ0 > 0 such that r − %δ0 > %d.
From (83) we obtain

E1 ≤ c(l1 + 1)1/22−rl1 +

l1∑
l=0

(l + 1)1/22−(r−%δ0)l−%d(l1−l)

≤ c 2−%dl1 ≤ cn−%.

Now we pass to indefinite integration. Using (81), we get

2−rl
(

(l + 1)1/2n−%l + n
−1/2
l (log nl + 1)1/2

)
≤ c 2−rl

(
(l + 1)1/2(l1 + 1)θ%2−%d(l1−l)+%δ0l+%δ1(l1−l)

+(l1 − l + 1)1/2(l1 + 1)θ/22−d(l1−l)/2+δ0l/2+δ1(l1−l)/2
)

= c(l1 + 1)θ%(l + 1)1/22−(r−%δ0)l−%(d−δ1)(l1−l)

+c(l1 + 1)θ/2(l1 − l + 1)1/22−(r−δ0/2)l−(d−δ1)(l1−l)/2. (84)

If r/d < min(%, 1/2), we set θ = δ0 = 0 and choose δ1 > 0 in such a way that
r < (d− δ1) min(%, 1/2). Using (77) and (84), we obtain

E ≤ c(l1 + 1)1/22−rl1 + c

l1∑
l=0

(l + 1)1/22−rl−%(d−δ1)(l1−l)

+c

l1∑
l=0

(l1 − l + 1)1/22−rl−
1
2

(d−δ1)(l1−l)

≤ c(l1 + 1)1/22−rl1 ≤ cn−r/d(log n)1/2.

If r/d = min(%, 1/2), we let θ = 1, δ0 = δ1 = 0. Then (77) and (84) yield

E ≤ c(l1 + 1)1/22−rl1 + c(l1 + 1)%
l1∑
l=0

(l + 1)1/22−rl−%d(l1−l)

+c(l1 + 1)1/2

l1∑
l=0

(l1 − l + 1)1/22−rl−
1
2
d(l1−l). (85)
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We distinguish between three subcases. If r/d = % < 1/2, then (85) yields

E ≤ c(l1 + 1)1/22−rl1 + c(l1 + 1)%+3/22−rl1 + c(l1 + 1)1/22−rl1

≤ c(l1 + 1)r/d+3/22−rl1 ≤ cn−r/d(log n)r/d+3/2.

If r/d = % = 1/2, (85) gives

E ≤ c(l1 + 1)1/22−rl1 + c(l1 + 1)%+3/22−rl1 + c(l1 + 1)22−rl1

≤ c(l1 + 1)r/d+3/22−rl1 ≤ cn−r/d(log n)r/d+3/2.

Finally, if r/d = 1/2 < %, we conclude from (85), taking into account that % ≤ 1,

E ≤ c(l1 + 1)1/22−rl1 + c(l1 + 1)%+1/22−rl1 + c(l1 + 1)22−rl1

≤ c(l1 + 1)r/d+3/22−rl1 ≤ cn−r/d(log n)r/d+3/2.

Now we assume r/d > min(%, 1/2). Here we set θ = δ1 = 0, and choose δ0 > 0
such that r − δ0 max(%, 1/2) > dmin(%, 1/2). Then (77) and (84) imply

E ≤ c(l1 + 1)1/22−rl1 + c

l1∑
l=0

(l + 1)1/22−(r−%δ0)l−%d(l1−l)

+c

l1∑
l=0

(l1 − l + 1)1/22−(r−δ0/2)l− 1
2
d(l1−l). (86)

We consider two subcases. For % ≥ 1/2 we get from (86)

E ≤ c(l1 + 1)1/22−rl1 + c(l1 + 1)1/2

l1∑
l=0

2−(r−%δ0)l− 1
2
d(l1−l)

≤ c(l1 + 1)1/22−rl1 + c(l1 + 1)1/2 2−
1
2
dl1 ≤ c n−1/2(log n)1/2.

If % < 1/2, we have

(l1 − l + 1)1/22−(r−δ0/2)l− 1
2
d(l1−l) ≤ c 2−(r−δ0/2)l−%d(l1−l),

so we obtain from (86)

E ≤ c(l1 + 1)1/22−rl1 + c

l1∑
l=0

(l + 1)1/22−(r−δ0/2)l−%d(l1−l)

≤ c 2−%dl1 ≤ cn−%.

This completes the proof of (78) and (79).
It follows from (75), (80), and (81) that

card(A1) = card(A ) ≤ c2dl1 + c(l1 + 1)−θ
l1∑
l=1

2dl1−δ0l−δ1(l1−l)

≤ c2dl1 ≤ cn,

provided δ0 + δ1 + θ > 0, which holds in all cases considered above.
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6 Complexity

We work in the framework of information-based complexity theory (IBC) as dis-
cussed in [20, 12]. Here we briefly describe the general setting for strong approx-
imation of stochastic problems. An abstract problem is given by a tuple

P = (F, (Ω,Σ,P), G, S,K,Λ).

Here F is a non-empty set, (Ω,Σ,P) a probability space, G a normed linear
space, and S a mapping from F × Ω to G, called solution operator. We assume
that for each f ∈ F the mapping ω → S(f, ω) is Σ-to-Borel-measurable and
P-almost surely separably valued, the latter meaning that for each f ∈ F there
is a separable subspace Gf of G such that

P{ω : S(f, ω) ∈ Gf} = 0.

Furthermore, K is a non-empty set, and Λ is a set of mappings from F × Ω to
K, the set of admissible information functionals.

In this paper we restrict our attention to nonadaptive deterministic algo-
rithms. An nonadaptive deterministic algorithm A for P is a tuple

A = (λ1, . . . , λn, ϕ),

where n ∈ N, λ1, . . . , λn ∈ Λ, and ϕ is an arbitrary mapping from Kn to G. The
output A(f, ω) ∈ G of algorithm A at input (f, ω) ∈ F × Ω is defined as

A(f, ω) = ϕ(λ1(f, ω), . . . , λn(f, ω)).

We require that for each f ∈ F the mapping ω → A(f, ω) is Σ-to-Borel measur-
able and P-almost surely separably valued. Note that the algorithm definition
does not involve S. For a fixed n ∈ N we denote the set of all such algorithms
by A det

n (F ×Ω, G). The number n is called the cardinality of A. The error of an
algorithm A ∈ A det

n (F × Ω, G) is defined by

e(S,A, F × Ω, G) = sup
f∈F

E ‖S(f, ω)− A(f, ω)‖G.

Finally, the n-th minimal error is defined for n ∈ N as

en(S, F × Ω, G) = inf
A∈A det

n (F×Ω,G)
e(S,A, F × Ω, G),

that is, en(S, F × Ω, G) is the minimal possible error among all deterministic
algorithms that use at most n information functionals.
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6.1 Banach space valued setting

Let X, Y be Banach spaces, T ∈M2(Y,X), T 6= 0, 0 ≤ % ≤ 1, κ > 0, 2 < q <∞.
For the definite integration problem we choose F = F %([0, 1]× Ω, Y ;κ), G = X,
S = ST1 , K = X ∪ R, and

ΛT = {δit : t ∈ [0, 1], i = 0, 1},

where for f ∈ F , ω ∈ Ω,

δ0
t (f, ω) = Tf(t, ω), δ1

t (f, ω) = W (t, ω).

Note that a part of the information is Banach space valued. Thus the Banach
space valued definite stochastic integration problem is given by

PT1 = (F %([0, 1]× Ω, Y ;κ), (Ω,Σ,P), X, ST1 , X ∪ R,ΛT ).

In the indefinite case we choose F = F %
q ([0, 1]×Ω, Y ;κ), G = C([0, 1], X), S = ST ,

K = X ∪ R, and Λ = ΛT as above. Then the indefinite problem is described by

PT = (F %
q ([0, 1]× Ω, Y ;κ), (Ω,Σ,P), C([0, 1], X), ST , X ∪ R,ΛT ).

Next we state a complexity result for Banach space valued stochastic integration.
We use the following abbreviations

en(ST1 ) := en(ST1 , F
%([0, 1]× Ω, Y ;κ)× Ω, X),

en(ST ) := en(ST , F %
q ([0, 1]× Ω, Y ;κ)× Ω, C([0, 1], X)).

Theorem 6.1. Let X, Y be Banach spaces, T ∈ M2(Y,X), T 6= 0, κ > 0,
0 ≤ % ≤ 1, 2 < q <∞. Then the following hold

en(ST1 ) � n−%

en(ST ) �
{
n−% if % < 1/2
n−1/2(log n)1/2 if % ≥ 1/2.

Proof. The upper bounds follow immediately from Proposition 3.1. The lower
bounds can be shown by reduction to the scalar valued setting: Let y0 ∈ Y be
such that ‖y0‖Y = 1 and Ty0 6= 0. Choose a V ∈ X∗ with ‖V ‖X∗ = 1 and
〈Ty0, V 〉 6= 0. Define the mapping U : R→ Y by Uβ = κβy0. Then f ∈ BC %([0,1])

implies Uf ∈ F %
q ([0, 1]× Ω, Y ;κ). Consider the scalar problems

PIR1 = (BC %([0,1]), (Ω,Σ,P),R, SIR1 ,R,ΛIR)

PIR = (BC %([0,1]), (Ω,Σ,P), C([0, 1]), SIR ,R,ΛIR),

Let f ∈ BC %([0,1]). Since V TU = κ 〈Ty0, V 〉 (it is convenient for us to consider V
also as an operator V ∈ L (X,R)),we conclude from (31) and (32),

V ST (Uf, ω) = SV TU(f, ω) = κ 〈Ty0, V 〉SIR(f, ω) (P-a.s.). (87)
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and similarly,

V ST1 (Uf, ω) = κ 〈Ty0, V 〉SIR1 (f, ω) (P-a.s.), (88)

It is easily checked that an algorithm

A ∈ A det
n (F %

q ([0, 1]× Ω, Y ;κ)× Ω, C([0, 1], X))

for PT induces an algorithm Ã ∈ A det
n (BC %([0,1]) × Ω, C([0, 1])) for PIR given by

Ã(f, ω) = κ−1 〈Ty0, V 〉−1 〈A(Uf, ω), V 〉 .

Using (87), we conclude

e(SIR , Ã, BC %([0,1]) × Ω, C([0, 1]))

= sup
f∈BC%([0,1])

E
∥∥SIR(f, ω)− Ã(f, ω)

∥∥
C([0,1])

= κ−1 |〈Ty0, V 〉|−1 sup
f∈BC%([0,1])

E
∥∥ 〈ST (Uf, ω), V

〉
− 〈A(Uf, ω), V 〉

∥∥
C([0,1])

≤ κ−1 |〈Ty0, V 〉|−1 sup
f∈BC%([0,1])

E
∥∥ST (Uf, ω)− A(Uf, ω)

∥∥
C([0,1],X)

≤ κ−1 |〈Ty0, V 〉|−1 e(ST , A, F %
q ([0, 1]× Ω, Y ;κ)× Ω, C([0, 1], X)),

hence

en(ST , F %
q ([0, 1]× Ω, Y ;κ)× Ω, C([0, 1], X))

≥ κ |〈Ty0, V 〉| en(SIR , BC %([0,1]) × Ω, C([0, 1])). (89)

Arguing similarly, we obtain from (88)

en(ST1 , F
%([0, 1]× Ω, Y ;κ)× Ω, X)

≥ κ |〈Ty0, V 〉| en(SIR1 , BC %([0,1]) × Ω,R). (90)

It was shown in [18] that

en(SIR1 , BC %([0,1]) × Ω,R) ≥ cn−%. (91)

Using this and (89), we derive

en(ST , F %
q ([0, 1]× Ω, Y ;κ)× Ω, C([0, 1], X))

≥ κ |〈Ty0, V 〉| en(SIR , BC %([0,1]) × Ω, C([0, 1]))

≥ κ |〈Ty0, V 〉| en(SIR1 , BC %([0,1]) × Ω,R) ≥ cn−%, (92)

where we used (28) again. Thus, the lower bound of the definite case in Theorem
6.1 follows from (90) and (91). For % < 1/2 the lower bound for the indefinite
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case is a consequence of (92). Furthermore, the indefinite scalar case contains
for f ≡ 1 the problem of approximation of the Wiener process W (t, ω) itself.
Therefore we get from [19] and [11]

en(SIR , BC %([0,1]) × Ω, C([0, 1])) ≥ cn−1/2(log n)1/2. (93)

Thus, for % ≥ 1/2 the lower bound of the indefinite case follows from (92) and
(93).

6.2 Parametric setting

For definite integration we choose F = F r,%(Q× [0, 1]×Ω;κ), G = C(Q), S = S1,
K = R, and Λ is given by

Λ = {δst : s ∈ Q, t ∈ [0, 1]} ∪ {δt : t ∈ [0, 1]},

where for f ∈ F , ω ∈ Ω,

δst(f, ω) = f(s, t), δt(f, ω) = W (t, ω).

Here we have R valued information consisting of values of f and W . So the
definite integration problem is defined by

P1 = (F r,%(Q× [0, 1]× Ω;κ), (Ω,Σ,P), C(Q),S1,R,Λ).

Moreover, for the indefinite problem we set F = F r,%
q (Q × [0, 1] × Ω;κ), G =

C(Q × [0, 1]), S = S , K = R, and Λ as above, thus, the indefinite integration
problem is described by

P = (F r,%
q (Q× [0, 1]× Ω;κ), (Ω,Σ,P), C(Q× [0, 1]),S ,R,Λ).

We write for brevity

en(S1) := en(S1, F
r,%(Q× [0, 1]× Ω;κ)× Ω, C(Q)),

en(S ) := en(S , F r,%
q (Q× [0, 1]× Ω;κ)× Ω, C(Q× [0, 1])).

Theorem 6.2. Let r, d ∈ N, κ > 0, 0 ≤ % ≤ 1, and 2 < q < ∞. Then we have
in the definite case

n−
r
d � en(S1) � n−

r
d (log n)

1
2 if r

d
< %

n−
r
d � en(S1) � n−

r
d (log n)

r
d

+ 3
2 if r

d
= %

en(S1) � n−% if r
d
> %.
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Moreover, in the indefinite case,

n−
r
d � en(S ) � n−

r
d (log n)

1
2 if % < 1

2
∧ r

d
< %

n−
r
d � en(S ) � n−

r
d (log n)

r
d

+ 3
2 if % < 1

2
∧ r

d
= %

en(S ) � n−% if % < 1
2
∧ r

d
> %

n−
r
d � en(S ) � n−

r
d (log n)

1
2 if % ≥ 1

2
∧ r

d
< 1

2

n−
1
2 (log n)

1
2 � en(S ) � n−

1
2 (log n)2 if % ≥ 1

2
∧ r

d
= 1

2

en(S ) � n−
1
2 (log n)

1
2 if % ≥ 1

2
∧ r

d
> 1

2
.

Proof. The upper bounds follow immediately from Theorem 5.3. To prove the
lower bounds, define

R1 : BCr(Q) → F r,%
q (Q× [0, 1]× Ω;κ), (R1(g))(s, t, ω) := κg(s).

Let g ∈ BCr(Q). Then according to definition (57), R1(g)(t, ω) = κg. Using (68)
and (30), we obtain

S1(R1(g), ω) = SJ1

(
R1(g), ω

)
= κg

(∫ 1

0

dW (t)

)
(ω) = κW (1, ω)g (P-a.s.).

Now let A ∈ A det
n (F r,%(Q× [0, 1]× Ω;κ)× Ω, C(Q)). We have

e(S1, A,R1(BCr(Q))× Ω, C(Q))

= sup
g∈BCr(Q)

E ‖S1(R1(g), ω)− A(R1(g), ω)‖C(Q)

= sup
g∈BCr(Q)

E ‖κW (1, ω)g − A(R1(g), ω)‖C(Q).

≥ P{ω : W (1, ω) ≥ 1} ×
sup

g∈BCr(Q)

E
(
‖κW (1, ω)g − A(R1(g), ω)‖C(Q)

∣∣W (1, ω) ≥ 1
)

≥ c sup
g∈BCr(Q)

E

(∥∥∥∥g − 1

κW (1, ω)
A(R1(g), ω)

∥∥∥∥
C(Q)

∣∣∣∣∣W (1, ω) ≥ 1

)
. (94)

Set Ω1 := {ω ∈ Ω : W (1, ω) ≥ 1} and define

A1
ω(g) =

1

κW (1, ω)
A(R1(g), ω) (ω ∈ Ω1)

Then
A1 =

((
Ω1,Σ|Ω1,P|Ω1

)
,
(
A1
ω

)
ω∈Ω1

)
,

with Σ|Ω1 the induced σ-algebra and P|Ω1 the normalized restriction of P, is a
randomized algorithm for the approximation of the embedding J : Cr(Q)→ C(Q)
of cardinality ≤ n. From (94) we conclude

en(S1, R1(BCr(Q))× Ω, C(Q)) ≥ ceran
n (J,BCr(Q), C(Q)) ≥ cn−r/d
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(the latter relation being well-known, see [21], [12] for this result and also for the
definition of the randomized n-th minimal errors eran

n ). We conclude that

en(S1, F
r,%(Q× [0, 1]× Ω;κ)× Ω, C(Q))

≥ cen(S1, R1(BCr(Q))× Ω, C(Q)) ≥ cn−r/d,

and therefore, using (69),

en(S , F r,%
q (Q× [0, 1]× Ω;κ)× Ω, C(Q× [0, 1]))

≥ en(S , R1(BCr(Q))× Ω, C(Q× [0, 1]))

≥ en(S1, R1(BCr(Q))× Ω, C(Q)) ≥ cn−r/d.

Now we show that, similarly to the Banach space case, real-valued stochastic
integration reduces to parametric stochastic integration. Let y0 ∈ Cr(Q), y0 ≡ 1,
let V ∈ C(Q)∗ be given by 〈g, V 〉 = g(0), and U ∈ L (R, Cr(Q)) by Uβ = κβy0.
Define

R2 : BC %([0,1]) → F r,%
q (Q× [0, 1]× Ω;κ), (R2(f))(s, t, ω) = κf(t).

Let f ∈ BC %([0,1]). Then R2(f) = Uf . By (32) ,

VS (R2(f), ω) = V SJ(Uf, ω) = SV JU(f, ω) = κSIR(f, ω) (P-a.s.),

and similarly,

VS1(R2(f), ω) = κSIR1 (f, ω) (P-a.s.),

It is readily verified that an algorithm for S1 can be turned into an algorithm
for SIR1 of the same cardinality, and similarly for S and SIR . Following the same
pattern of proof as in the Banach space case, we obtain, taking also into account
(91),

en(S1, F
r,%(Q× [0, 1]× Ω;κ)× Ω, C(Q))

≥ κen(SIR1 , BC %([0,1]) × Ω,R) ≥ cn−%,

and respectively, using (92) and (93),

en(S , F r,%
q (Q× [0, 1]× Ω;κ)× Ω, C(Q× [0, 1]))

≥ κen(SIR , BC %([0,1]) × Ω, C([0, 1]))

≥ cmax(n−%, n−1/2(log n)1/2).
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