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Abstract

We study the approximation of Sobolev embeddings by linear randomized

algorithms based on function values. Both the source and the target space

are Sobolev spaces of non-negative smoothness order, defined on a bounded

Lipschitz domain. The optimal order of convergence is determined. We

also study the deterministic setting. Using interpolation, we extend the

results to other classes of function spaces. In this context a problem posed

by Novak and Woźniakowski is solved. Finally, we present an application

to the complexity of general elliptic PDE.

1 Introduction

Randomized approximation of functions based on function values was studied by
Wasilkowski [22], Novak [10], and Mathé [9]. They considered the approximation
of functions from Sobolev spaces W r

p (Q) in the norm of Lq(Q), under the assump-
tion that W r

p (Q) is embedded into C(Q̄). In this case the rate for randomized
approximation is the same as that for the deterministic setting. Recently the case
of non-embedding was studied in [7], where it was observed that randomization
can bring an essential speedup over deterministic algorithms. In all these papers
the target space was Lq(Q) and the domain Q was a cube.

Here we extend the analysis of [7] to the case of Sobolev spaces of non-negative
smoothness order as target spaces, and to bounded Lipschitz domains. The paper
is a continuation of part I, [7] (target space Lq(Q)), and is followed by part III,
[8], where the case of a target space with negative smoothness order is studied.

The main results of this paper are proved for Sobolev spaces of integer order.
In chapter 5 we use interpolation to extend the results to Besov and Bessel po-
tential spaces. Our methods also give new results for the deterministic setting,
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extending results of Novak and Triebel [11] and Vyb́ıral [20]. In this connection
we solve open problem 18 posed by Novak and Woźniakowski [12].

There is a direct relation to the information complexity of elliptic partial
differential equations via regularity and isomorphism theorems. We present the
respective consequences.

2 Preliminaries

Let N = {1, 2, . . . } and N0 = N ∪ {0}. Let K stand for the field of reals R or
complex numbers C. Let d ∈ N and let Q ⊂ Rd be a bounded Lipschitz domain.
By this we mean for d = 1 a finite union of bounded open intervals with disjoint
closure. If d ≥ 2, we mean an open bounded set with a locally Lipschitz boundary.
More precisely, for each x ∈ ∂Q there is an open ball B centered at x, a rotation
U of Rd around x and a Lipschitz function h : Rd−1 → R such that

Q ∩B = Q ∩ U{(x1, . . . , xd−1, xd) ∈ R
d : xd ≤ h(x1, . . . , xd−1)}

(see also [19], Def. 4.3). Throughout the paper we consider K-valued functions
and linear spaces over K, with K being fixed for all the spaces involved. C(Q̄)
denotes the space of continuous functions on the closure Q̄ of Q, endowed with the
supremum norm. For 1 ≤ p ≤ ∞, let Lp(Q) be the space of K-valued p-integrable
functions, equipped with the usual norm

‖f‖Lp(Q) =

(∫

Q

|f(x)|pdx
)1/p

if p <∞, and
‖f‖L∞(Q) = ess supx∈Q|f(x)|.

Let r ∈ N0. The Sobolev space W r
p (Q) consists of all functions f ∈ Lp(Q) such

that for all α = (α1, . . . , αd) ∈ N
d
0 with |α| :=

∑d
j=1 αj ≤ r, the generalized

partial derivative Dαf belongs to Lp(Q). The norm on W r
p (Q) is defined as

‖f‖W r
p (Q) =





∑

|α|≤r

‖Dαf‖p
Lp(Q)





1/p

if p <∞, and
‖f‖W r

∞
(Q) = max

|α|≤r
‖Dαf‖L∞(Q).

For a normed space G the unit ball {g ∈ G : ‖g‖ ≤ 1} is denoted by BG.
Throughout the paper log means log2. Furthermore, we often use the same symbol
c, c1, . . . for possibly different positive constants (also when they appear in a
sequence of relations). These constants are either absolute or may depend only on
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the problem parameters p, q, r, s, d and the domain Q, but not on approximation
parameters like n, k, l, ω – in all statements of lemmas, propositions, etc., this is
precisely described anyway by the order of the quantifiers.

Let F(Q) denote the linear space of all K-valued functions on Q and let L0(Q)
be the linear space of equivalence classes of Lebesgue measurable functions on Q,
with the usual equivalence of being equal except for a set of Lebesgue measure
zero. Let F ⊆ L0(Q) be any nonempty subset and G a normed space. For n ∈ N

we consider the class Aran
n (F,G) of linear randomized algorithms from F to G.

An element A ∈ Aran
n (F,G) has the form

A = ((Ω,Σ,P), (Aω)ω∈Ω),

where (Ω,Σ,P) is a probability space and each Aω is a linear operator from F(Q)
to G of the form

Aω(g) =
n
∑

i=1

g(xi,ω)ψi,ω

with xi,ω ∈ Q and ψi,ω ∈ G. We assume the following properties: Whenever f0

and f1 are representatives of the same class f ∈ F ⊆ L0(Q), then

Aω(f0) = Aω(f1) P − a.s.

Furthermore, for each f ∈ F , and each representative f0 of f the mapping

ω ∈ Ω → Aω(f0)

is a random variable with values in G, that is, it is Σ-to-Borel measurable and
there is a separable subspace G0 ⊂ G (which may depend on f) such that
Aω(f0) ∈ G0 holds P-almost surely. We put Aran(F,G) =

⋃

n∈N
Aran

n (F,G).
Let S : F → G be any mapping. The error of an algorithm A ∈ Aran

n (F,G)
in approximating S is defined as

e(S,A, F,G) = sup
f∈F

E ‖S(f) − Aω(f)‖G ,

where E is the expectation with respect to P (and +∞ is admitted as a possible
value). The randomized n-th minimal error (or more precisely, the n-th minimal
error with respect to the class of randomized linear algorithms) is defined as

eran
n (S, F,G) = inf

A∈Aran
n (F,G)

e(S,A, F,G).

Hence, no linear randomized algorithm that uses at most n function values can
provide a smaller error than eran

n (S, F,G). We have chosen the first moment
for the minimal error, which is convenient for the sequel. Statements for other
exponents can be read from the proofs below. We also include the target space
into the notation since we often consider the same operator acting in different
spaces.
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We also consider deterministic algorithms. Here we assume that F ⊆ F(Q)
(that is, function values are well-defined). Let G be a normed space. The class
of linear deterministic algorithms Adet

n (F,G) consists of all linear operators from
F(Q) to G of the form

A(g) =
n
∑

i=1

g(xi)ψi

with xi ∈ Q and ψi ∈ G. The error of A ∈ Adet
n (F,G) in approximating S is

defined as
e(S,A, F,G) = sup

f∈F
‖S(f) − A(f)‖G

and the deterministic n-th minimal error as

edet
n (S, F,G) = inf

A∈Adet
n (F,G)

e(S,A, F,G).

The quantities edet
n (S, F,G) were also called linear sampling numbers [11].

Thus, the eran
n (S, F,G) can be viewed as randomized linear sampling numbers.

Throughout this paper we consider only linear algorithms. Concerning more
general algorithm classes, see the remark at the end of section 3.

3 Main results

The following is the main result of this paper and extends a result of [7] for the
cube to arbitrary bounded Lipschitz domains. Moreover, in [7] the target space
was supposed to be Lq, while here we also consider Sobolev spaces W s

q .
Let r, s ∈ N0, 1 ≤ p, q ≤ ∞, and let Q be a bounded Lipschitz domain. Recall

from [1], Th. 5.4, that W r
p (Q) is continuously embedded into W s

q (Q) if

1 ≤ q <∞ and r−s
d

≥
(

1
p
− 1

q

)

+

or
q = ∞, 1 < p <∞, and r−s

d
> 1

p

or
q = ∞, p ∈ {1,∞}, and r−s

d
≥ 1

p
.



























(1)

Here we used the notation a+ = max(a, 0) for a ∈ R. Let J : W r
p (Q) → W s

q (Q)
be the embedding operator.

Theorem 3.1. Let r, s ∈ N0, 1 ≤ p, q ≤ ∞, Q be a bounded Lipschitz domain,
and assume that (1) holds. Then there are constants c1, c2 > 0 such that for all
n ∈ N

c1n
−γ ≤ eran

n (J,BW r
p (Q),W

s
q (Q)) ≤ c2n

−γ,

where

γ =
r − s

d
−
(

1

p
− 1

q

)

+

.
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For the proof we need some preparations. Let 0 < δ < 1,

% ∈ N0, % ≥ r − 1, (2)

and let

Pf =
κ
∑

j=1

f(yj)ψj

be for d = 1 the Lagrange interpolation operator of degree % and for d > 1
its tensor product, with (yj)

κ
j=1 the uniform grid on [0, 1 − δ]d and (ψj)

κ
j=1 the

respective Lagrange polynomials, considered as functions on Rd. Clearly,

Pg = g (g ∈ P%), (3)

where P% is the space of polynomials on Rd of degree not exceeding %.
Put Ω = [0, δ]d, let Σ be the σ-algebra of Lebesgue measurable subsets of Ω

and P the normalized on [0, δ]d Lebesgue measure. For ω ∈ Ω = [0, δ]d put

yj,ω = yj + ω, (4)

ψj,ω(x) = ψj(x− ω) (x ∈ R
d), (5)

and define an operator Pω by setting for any function f ∈ F
(

[0, 1]d
)

(Pωf) (x) =
κ
∑

j=1

f(yj,ω)ψj,ω(x) (x ∈ R
d). (6)

It follows from (3) that

Pωg = g (g ∈ P%, ω ∈ Ω). (7)

Moreover, for 1 ≤ q <∞,

(E |f(yj,ω)|q)1/q ≤ c‖f‖Lq([0,1]d) (f ∈ Lq([0, 1]d), 1 ≤ j ≤ κ). (8)

Let Q be a bounded Lipschitz domain. We fix any axis-parallel cube

Q̃ = x0 + [0, b]d with Q ⊂ Q̃. (9)

For l ∈ N0 let

Q̃ =
2dl
⋃

i=1

Qli

be the partition of Q̃ into 2dl cubes of sidelength b2−l and of disjoint interior.
Let xli denote the point in Qli with minimal coordinates. Introduce the following
operators Eli and Rli from F(Rd) to F(Rd), by setting for f ∈ F(Rd) and x ∈ Rd

(Elif)(x) = f(xli + b2−lx) (10)
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and
(Rlif)(x) = f(b−12l(x− xli)). (11)

(If these operators are applied to a function f which is defined on a subset of Rd,
we assume that f is extended to all of R

d by zero.)
Define

Il = {i : 1 ≤ i ≤ 2dl, Qli ⊆ Q}
First we establish a simple geometric property. Let B(x, τ) denote the closed ball
of radius τ around x ∈ R

d and B0(x, τ) its interior.

Lemma 3.2. There are constants a > b
√
d and l0 ∈ N0 such that for all l ≥ l0

Q ⊆
⋃

i∈Il

B(xli, a2
−l). (12)

Proof. By elementary geometry, the Lipschitz property (in fact, the slightly
weaker cone property, see [1], Ch. IV, for the definition) implies the following:
There are constants τ0 > 0, 0 < γ0 < 1 such that for all x ∈ Q and all 0 < τ ≤ τ0
there is a y ∈ Q such that

B(y, γ0τ) ⊆ Q ∩B(x, τ).

We define

a = (γ−1
0 + 1)b

√
d (13)

l0 = max

(⌈

log
b
√
d

γ0τ0

⌉

, 0

)

. (14)

Let l ≥ l0 and assume the contrary of (12), that is, there is an x ∈ Q such that

|x− xli| > a2−l (i ∈ Il).

Then
B
(

x, (a− b
√
d)2−l

)

∩
⋃

i∈Il

Qli = ∅.

By (13) and (14),

(a− b
√
d)2−l = γ−1

0 b
√
d2−l ≤ γ−1

0 b
√
d2−l0 ≤ τ0,

so there is a ball of radius γ0(a− b
√
d)2−l contained in

Q \
⋃

i∈Il

Qli.

But such a ball contains an axis-parallel cube of sidelength

d−1/2γ0(a− b
√
d)2−l+1 = b 2−l+1,

and hence, a cube Q
(0)
lj for some j, a contradiction to the definition of Il.
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Now we use this lemma to construct a suitable partition of unity on Q. Let

σ ∈ N0, σ ≥ s, (15)

and let η ∈ Cσ(Rd) be such that η ≥ 0, η > 0 on B(0, a/b), and supp (η) ⊆
B0(0, 2a/b), with a from Lemma 3.2 and b from (9), where Cσ(Rd) denotes the
space of functions possessing continuous, bounded partial derivatives up to order
σ on R

d. Denote
B = B0(0, 2a/b)

and, for l ≥ l0,
Bli = B0(xli, a2

−l+1).

Clearly,
max
x∈Q

|{i ∈ Il : x ∈ Bli}| ≤ c. (16)

It follows from Lemma 3.2 and (16) that there are constants c1, c2, c3 > 0 such
that for l ≥ l0

∑

j∈Il

Rljη(x) ≥ c1 (x ∈ Q), (17)

moreover, for s1 ∈ N0, 0 ≤ s1 ≤ s,

‖Rliη‖Cs1 (Rd) ≤ c2 2s1l (i ∈ Il) (18)

and
∥

∥

∥

∑

j∈Il

Rljη
∥

∥

∥

Cs1 (Rd)
≤ c3 2s1l. (19)

Define for i ∈ Il and l ≥ l0 a function ηli on Q by setting

ηli(x) =
Rliη(x)

∑

j∈Il
Rljη(x)

(x ∈ Q).

Consequently,
ηli(x) = 0 (x ∈ Q \Bli) (20)

and
∑

i∈Il

ηli(x) = 1 (x ∈ Q). (21)

It follows from the definition of η and from (17–19) that for 0 ≤ s1 ≤ s

‖ηli‖Cs1(Q) ≤ c 2s1l. (22)

For l ≥ l0 and ω ∈ Ω define Pl,ω : F(Q) → W s
q (Q) by

Pl,ωf =
∑

i∈Il

ηli(RliPωElif)|Q (f ∈ F(Q)), (23)
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hence

(Pl,ωf)(x) =
∑

i∈Il

κ
∑

j=1

f(xli + b 2−lyj,ω)ηli(x)(Rliψj,ω)(x) (x ∈ Q). (24)

Let
Al = (Pl,ω)ω∈Ω . (25)

It easily follows from the definition that

Al ∈ Aran
κ2dl(W

r
p (Q),W s

q (Q)). (26)

Proposition 3.3. Let d ∈ N, r, s ∈ N0, 1 ≤ p, q ≤ ∞, let Q be a bounded
Lipschitz domain, and assume that (1) is satisfied. Let (Pl,ω)ω∈Ω for l ≥ l0 be
given by (23), with parameters % and σ satisfying (2) and (15). Then there is a
constant c > 0 such that for all l ≥ l0 and f ∈W r

p (Q) the following hold.
If q <∞, then

(E ‖f − Pl,ωf‖q
W s

q (Q))
1/q ≤ c 2−(r−s)l+max(1/p−1/q,0)dl‖f‖W r

p (Q), (27)

and if q = ∞, then

ess supω∈Ω‖f − Pl,ωf‖W s
∞

(Q) ≤ c 2−(r−s)l+dl/p‖f‖W r
p (Q). (28)

Proof. By (1), we have

‖f‖W s
q (B) ≤ c‖f‖W r

p (B) (f ∈W r
p (B)). (29)

We show (27), relation (28) follows in the same way, with the usual modifications.
It follows from (6), (8) and (29) that for f ∈W r

p (B) and 0 ≤ s1 ≤ s

(

E ‖Pωf‖q

W
s1
q (B)

)1/q

≤
(

E

(

κ
∑

j=1

|f(yj,ω)|‖ψj,ω‖W
s1
q (B)

)q)1/q

≤ c
κ
∑

j=1

(E |f(yj,ω)|q)1/q ≤ c‖f‖Lq(B)

≤ c‖f‖W r
p (B). (30)

We denote

|f |r,p,B =





∑

|α|=r

‖Dαf‖p
Lp(B)





1/p

if p <∞ and
|f |r,∞,B = max

|α|=r
‖Dαf‖L∞(B).
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Next we apply Theorem 3.1.1 from [2]: there is a constant c > 0 such that for all
f ∈W r

p (B)
inf

g∈P%

‖f − g‖W r
p (B) ≤ c|f |r,p,B . (31)

It follows from (7), and (29–31) that

(E ‖f − Pωf‖q
W s

q (B))
1/q = inf

g∈P%

(

E ‖(f − g) − Pω(f − g)‖q

W
s1
q (B)

)1/q

≤ c inf
g∈P%

‖f − g‖W r
p (B) ≤ c|f |r,p,B . (32)

Let f ∈W r
p (Q) and let f̃ ∈ W r

p (Rd) be an extension of f with

‖f̃‖W r
p (Rd) ≤ c‖f‖W r

p (Q)

(see [13]). Observe that for 0 ≤ s1 ≤ s

‖Rlig‖W
s1
q (Bli)

≤ c2(s1−d/q)l‖g‖W
s1
q (B) (g ∈W s1

q (B)) (33)

and by (22),

‖ηlig‖W s
q (Q∩Bli) ≤ c

s
∑

s1=0

2(s−s1)l‖g‖W
s1
q (Q∩Bli)

(g ∈W s
q (Q ∩Bli)). (34)

Because of (16), (20), and (21) we get

(E ‖f − Pl,ωf‖q
W s

q (Q))
1/q =

(

E

∥

∥

∥

∑

i∈Il

ηli(f −RliPωElif)
∥

∥

∥

q

W s
q (Q)

)1/q

≤ c

(

∑

i∈Il

E ‖ηli(f −RliPωElif)‖q
W s

q (Q)

)1/q

. (35)

Furthermore, using (34), (33), and (32),

E ‖ηli(f −RliPωElif)‖q
W s

q (Q) = E ‖ηli(f −RliPωElif)‖q
W s

q (Q∩Bli)

≤ c
s
∑

s1=0

2q(s−s1)lE ‖f − RliPωElif)‖q

W
s1
q (Q∩Bli)

≤ c
s
∑

s1=0

2q(s−s1)lE ‖f̃ − RliPωElif̃‖q

W
s1
q (Bli)

≤ c
s
∑

s1=0

2(qs−d)l
E ‖Elif̃ − PωElif̃‖q

W
s1
q (B)

≤ c 2(qs−d)l|Elif̃ |qr,p,B . (36)
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By Hölder’s inequality,
(

2−dl
∑

i∈Il

|Elif̃ |qr,p,B

)1/q

≤ c 2max(1/p−1/q,0)dl

(

2−dl
∑

i∈Il

|Elif̃ |pr,p,B

)1/p

= c 2max(1/p−1/q,0)dl



2−dl
∑

i∈Il

∑

|α|=r

∫

B

∣

∣

∣
Dα
(

f̃(xli + b 2−lx)
)∣

∣

∣

p

dx





1/p

≤ c 2−rl+max(1/p−1/q,0)dl





∑

i∈Il

∑

|α|=r

∫

Bli

∣

∣

∣

(

Dαf̃
)

(y)
∣

∣

∣

p

dy





1/p

= c 2−rl+max(1/p−1/q,0)dl

(

∑

i∈Il

|f̃ |pr,p,Bli

)1/p

≤ c 2−rl+max(1/p−1/q,0)dl|f̃ |r,p,Rd ≤ c 2−rl+max(1/p−1/q,0)dl‖f̃‖W r
p (Rd)

≤ c 2−rl+max(1/p−1/q,0)dl‖f‖W r
p (Q) (37)

(with the usual modifications for p = ∞). Combining (35–37) gives

(E ‖f − Pl,ωf‖q
W s

q (Q))
1/q ≤ c 2(s−r)l+max(1/p−1/q,0)dl‖f‖W r

p (Q),

which concludes the proof of (27).

Proof of Theorem 3.1. The upper bound is an immediate consequence of Propo-
sition 3.3, (26), and the monotonicity of the n-th minimal error with repect to
n.

Now we show the lower bound. Let Q′ = x′0 + [0, b′]d be a closed axis-parallel
cube contained in Q. Let ψ 6≡ 0 be a C∞ function on Rd with support in the
interior of [0, 1]d. Let n ∈ N, and put

k =

⌈

log n+ 1

d

⌉

,

hence
2d(k−1) < 2n ≤ 2dk.

Put
ψi = R′

kiψ (1 ≤ i ≤ 2dk),

where R′
ki is defined by analogy to (11), with Q̃ replaced by Q′. Observe that

c1 2rk−dk/p ‖(αi)‖`2dk
p

≤

∥

∥

∥

∥

∥

∥

2dk
∑

i=1

αiψi

∥

∥

∥

∥

∥

∥

W r
p (Q)

≤ c2 2rk−dk/p ‖(αi)‖`2dk
p

(38)
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for all (αi) ∈ K2dk

, where

‖(αi)‖`2
dk

p
=





2dk
∑

i=1

|αi|p




1/p

.

Using the well-known relation between randomized and average minimal error
(see [10, 14, 4]), here with respect to the counting measure on

{

±‖ψi‖−1
W r

p (Q)ψi : i = 1, . . . , 2dk
}

,

we obtain, taking into account relation (38),

eran
n (J,BW r

p (Q),W
s
q (Q)) ≥ 2dk − n

2dk
min

1≤i≤2dk

‖Jψi‖W s
q (Q)

‖ψi‖W r
p (Q)

≥ c 2sk−dk/q−rk+dk/p = c 2−(r−s)k+(1/p−1/q)dk

≥ cn−(r−s)/d+1/p−1/q. (39)

Now we prove a second estimate. Let εi (i = 1, . . . , 2dk) be independent Bernoulli
random variables with P{εi = 1} = P{εi = −1} = 1/2. We use again the average
minimal error, this time with respect to the distribution of

M−1
k

2dk
∑

i=1

εiψi,

where

Mk = max







∥

∥

∥

∥

∥

2dk
∑

i=1

αiψi

∥

∥

∥

∥

∥

W r
p (Q)

: αi ∈ {−1, 1}, i = 1, . . . , 2dk







.

Combined with (38), we get

eran
n (J,BW r

p (Q),W
s
q (Q))

≥ M−1
k min







E

∥

∥

∥

∥

∥

∑

i∈I

εiJψi

∥

∥

∥

∥

∥

W s
q (Q)

: I ⊆ {1, . . . , 2dk}, |I| ≥ 2dk − n







≥ c 2−rk+sk−dk/q(2dk − n)1/q ≥ cn−(r−s)/d. (40)

Now the lower bound in Theorem 3.1 is a consequence of (39) and (40).

Remark. By the same technique it can be shown that the lower bounds in
Theorem 3.1 also hold for the n-th minimal errors defined with respect to the class
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of randomized adaptive nonlinear algorithms (see e.g. [5, 6] for these notions). On
the other hand, upper bounds for a given algorithm class automatically hold for
any larger algorithm class. It follows that the rate in Theorem 3.1 also holds for
the class of randomized adaptive nonlinear algorithms, and also for any class in
between. In particular, it holds for randomized (nonlinear) sampling numbers [7],
as well.

4 Deterministic setting

Next we show the analogue of Proposition 3.3 for the deterministic case. First we
consider the case that W r

p (Q) is continuously embedded into C(Q̄). For r ∈ N0

this holds if and only if

p = 1 and r/d ≥ 1
or

1 < p ≤ ∞ and r/d > 1/p,







(41)

see [1], Ch. 5. In these cases we consider W r
p (Q) as identified with a subset of

C(Q̄), hence, function values at points of Q are well-defined and deterministic
algorithms as introduced in section 2 make sense. In particular, setting ω = 0 in
(23), we obtain a deterministic linear algorithm Pl,0.

The following is the deterministic counterpart of Proposition 3.3.

Proposition 4.1. Let d ∈ N, r, s ∈ N0, 1 ≤ p, q ≤ ∞, let Q be a bounded
Lipschitz domain, and assume that (1) and (41) are satisfied. Let Pl,0 for l ≥ l0
be given by (23) with ω = 0 and parameters % and σ satisfying (2) and (15). Then
there is a constant c > 0 such that for all l ≥ l0 and f ∈ W r

p (Q) the following
holds:

sup
f∈BWr

p (Q)

‖f − Pl,0f‖W s
q (Q) ≤ c 2−(r−s)l+max(1/p−1/q,0)dl. (42)

Proof. As in the proof of Proposition 3.3 we put B = B0(0, 2a/b), with a from
Lemma 3.2 and b from (9). Since W r

p (B) is continuously embedded into C(B̄),
we have the following instead of (30). For f ∈W r

p (B) and 0 ≤ s1 ≤ s

‖P0f‖W
s1
q (B) ≤

κ
∑

j=1

|f(yj)|‖ψj‖W
s1
q (B)

≤ c
κ
∑

j=1

|f(yj)| ≤ c‖f‖C(B̄) ≤ c‖f‖W r
p (B).

12



From (16), (20), and (21) we get

‖f − Pl,0f‖W s
q (Q) =

∥

∥

∥

∑

i∈Il

ηli(f −RliP0Elif)
∥

∥

∥

W s
q (Q)

≤ c

(

∑

i∈Il

‖ηli(f − RliP0Elif)‖q
W s

q (Q)

)1/q

.

The rest of the proof of (42) is essentially the same as that of (27).

Theorem 4.2. Let r, s ∈ N0, 1 ≤ p, q ≤ ∞, Q be a bounded Lipschitz domain,
and assume that (1) and (41) hold. Then there are constants c1, c2 > 0 such that
for all n ∈ N

c1n
−γ ≤ edet

n (J,BW r
p (Q),W

s
q (Q)) ≤ c2n

−γ,

where

γ =
r − s

d
−
(

1

p
− 1

q

)

+

.

Proof. The upper bound follows from Proposition 4.1. The lower bound can
be obtained by standard techniques for the deterministic setting (see [10], [14]),
based on relation (38). We omit details.

Comparing randomized and deterministic setting for the case of the embed-
ding condition (41), we see that randomization gives no speedup.

Now consider the case that (41) does not hold, hence W r
p (Q) is not embedded

into C(Q̄). In this case values of W r
p (Q) functions are not well-defined, so edet

n

makes no sense. This changes, if instead of BW r
p (Q) we consider the dense subset

BW r
p (Q) ∩ C(Q̄). Then function values are defined. However, deterministic algo-

rithms do not give any non-trivial convergence rate at all, as the following result
shows. It extends Proposition 2 of [7], where the case s = 0 was considered.

Theorem 4.3. Let r, s ∈ N0, 1 ≤ p, q ≤ ∞ and assume that (1) holds, but (41)
does not. Then there are constants c1, c2 > 0 such that for all n ∈ N

c1 ≤ edet
n (J,BW r

p (Q) ∩ C(Q̄),W s
q (Q)) ≤ c2. (43)

Proof. The upper bound is just the boundedness of J . To show the lower bound,
note that (41) does not hold iff

p = 1 and r/d < 1 (44)

or
1 < p <∞ and r/d ≤ 1/p (45)

or
p = ∞ and r = 0. (46)

13



If (46) holds, then (1) implies s = 0, so J is the embedding of L∞(Q) into Lq(Q)
(1 ≤ q ≤ ∞). Consequently,

edet
n (J,BL∞(Q) ∩ C(Q̄), Lq(Q)) = edet

n (J,BC(Q̄), Lq(Q)) ≥ c > 0,

since the embedding of C(Q̄) into Lq(Q) is not compact. If (44) or (45) hold,
then the conditions of Lemma 1 in [7] are satisfied and the same argument as in
the proof of Proposition 2 of [7] gives the lower bound of (43).

Comparing deterministic and randomized setting we conclude that in this case
randomization can give a speedup of up to n−β for any β with 0 < β < 1.

5 Extension to other function spaces

So far we considered Sobolev spaces whose smoothness order is a nonnegative
integer. Now we show how to extend the results to other function spaces by
interpolation. For r ∈ R, r ≥ 0, 1 ≤ p, u ≤ ∞, let Br

pu(Q) denote the Besov space
and for 1 < p <∞ let Hr

p(Q) be the Bessel potential space (also called fractional
Sobolev space). For the definition of these spaces on Rd we refer to [15, 16] and
for the case of bounded Lipschitz domains to [17, 19]. Throughout this section
we consider only complex-valued functions and spaces over the complex numbers
(see, however, the remark at the end of this section for the real case).

We use the following relations between these function spaces.

Hr
p(Q) = W r

p (Q) (r ∈ N0, 1 < p <∞), (47)

where equality is meant as algebraic identity with equivalence of norms, see [19],
(1.9),

Br
p,1(Q) ⊂ W r

p (Q) ⊂ Br
p,∞(Q) (p = 1,∞, r ∈ N0), (48)

the notation ⊂ meaning algebraic inclusion with continuous embedding, see [19],
(4.22)–(4.25),

B0
∞,1(Q) ⊂ C(Q̄) ⊂ B0

∞,∞(Q), (49)

see [19], (4.25), and for r ∈ R, r ≥ 0, 1 < p <∞,

Br
p,min(p,2)(Q) ⊂ Hr

p(Q) ⊂ Br
p,max(p,2)(Q), (50)

see [19], (1.8), (1.299). We also use the following interpolation results. Let

r0, r1 ∈ R, r0, r1 ≥ 0, 0 < θ < 1, r = (1 − θ)r0 + θr1.

For 1 ≤ p, u0, u1, u ≤ ∞, r0 6= r1,

(Br0
p,u0

(Q), Br1
p,u1

(Q))θ,u = Br
pu(Q), (51)

14



where ( , )θ,u denotes real interpolation, see [19], Cor. 1.111, relation (1.368), and
for 1 < p0, p1 <∞, with p given by

1

p
=

1 − θ

p0
+

θ

p1

we have
[

Hr0
p0

(Q), Hr1
p1

(Q)
]

θ
= Hr

p(Q), (52)

where [ , ]θ denotes classical complex interpolation, see [19], Cor. 1.111, relation
(1.372).

Let (Ω,Σ,P) be the probability space from section 2, defined before relation
(4). For 1 ≤ p < ∞ and a Banach space X we denote by Lp(Ω, X) the space
of X-valued p-th power Bochner integrable functions on (Ω,Σ,P). For r, s ∈ N0,
1 ≤ p, q ≤ ∞ satisfying (1), % ≥ r − 1, σ ≥ s (%, σ the parameters from (2) and
(15)), 1 ≤ q1 <∞, q1 ≤ q, l ≥ l0, define the operators

Pl, I : W r
p (Q) → Lq1(Ω,W

s
q (Q))

by setting for ω ∈ Ω

(Plf)(ω) = Pl,ωf

(If)(ω) = f.

By Proposition 3.3 and (1), these operators are well-defined, bounded, and we
have

‖I − Pl : W r
p (Q) → Lq1(Ω,W

s
q (Q))‖ ≤ c 2−(r−s)l+max(1/p−1/q,0)dl. (53)

We start with the counterpart of Proposition 3.3.

Proposition 5.1. Let r, s ∈ R, r > s ≥ 0, 1 ≤ p, q ≤ ∞, 1 ≤ q1 < ∞, q1 ≤ q,
1 ≤ u, v ≤ ∞, and assume (r − s)/d > 1/p− 1/q. Let Q be a bounded Lipschitz
domain. Let (Pl,ω)ω∈Ω for l ≥ l0 be given by (23), where we assume that the
involved parameters % and σ from (2) and (15) satisfy % ≥ r, σ ≥ r + 1. Then
there is a constant c > 0 such that for all l ≥ l0 the following hold. If s > 0

sup
f∈BBr

pu(Q)

(E ‖f − Pl,ωf‖q1

Bs
qv(Q))

1/q1 ≤ c 2−(r−s)l+max(1/p−1/q,0)dl, (54)

furthermore, for s = 0,

sup
f∈BBr

pu(Q)

(E ‖f − Pl,ωf‖q1

Lq(Q))
1/q1 ≤ c 2−rl+max(1/p−1/q,0)dl, (55)

and finally, if s ≥ 0 and 1 < p, q <∞,

sup
f∈BHr

p(Q)

(E ‖f − Pl,ωf‖q1

Hs
q (Q))

1/q1 ≤ c 2−(r−s)l+max(1/p−1/q,0)dl. (56)
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Proof. We prove the case of Besov spaces by the help of real interpolation. The
case of Bessel potential spaces can be handled in the same way using complex
interpolation. We start with the case p = q. Put r0 = dre−1, r1 = brc+1, hence
0 ≤ r0 < r < r1. Moreover, % ≥ r1 − 1 and σ ≥ r1. Let 0 < θ < 1 be such that
r = (1 − θ)r0 + θr1. By (47–48), (50–51), we have

(W r0
p (Q),W r1

p (Q))θ,u = Br
pu(Q). (57)

Furthermore, if X0, X1 is an interpolation pair of Banach spaces, then

(Lq1(Ω, X0), Lq1(Ω, X1))θ,u = Lq1(Ω, (X0, X1)θ,u), (58)

and the respective statement holds for complex interpolation (see [15], 1.18.4).
By (53),

‖I − Pl : W ri
p (Q) → Lq1(Ω, Lp(Q))‖ ≤ c 2−ril (i = 0, 1).

Using (57), interpolation gives

‖I − Pl : Br
pu(Q) → Lq1(Ω, Lp(Q))‖ ≤ c 2−rl, (59)

which proves relation (55) for p = q. Moreover, again from (53),

‖I − Pl : W ri
p (Q) → Lq1(Ω,W

ri
p (Q))‖ ≤ c (i = 0, 1),

which by (57) and (58) implies

‖I − Pl : Br
pu(Q) → Lq1(Ω, B

r
pu(Q))‖ ≤ c. (60)

Next define θ = s/r and let 1 ≤ v ≤ ∞. By (47–48), (50–51), we have

(Lp(Q), Br
pu(Q))θ,v = Bs

pv(Q).

The interpolation property together with (58), (59), and (60) gives

‖I − Pl : Br
pu(Q) → Lq1(Ω, B

s
pv(Q))‖ ≤ c 2−(r−s)l. (61)

This implies (54) for p = q.
Now assume 1 ≤ p 6= q ≤ ∞, r > s ≥ 0, (r − s)/d > 1/p− 1/q. Let

r1 = r − d

(

1

p
− 1

q

)

+

.

It follows that r1 > s. We use that the following embedding is continuous:

Br
pu(Q) → Br1

qu(Q).

(For p < q this follows from [16], Theorem 2.7.1, and the remarks in Ch. 2.3 of
[17] about passing from R

d to arbitrary domains. For p ≥ q it is a consequence

16



of [19], Th. 1.118.) With this, the first two statements of Proposition 5.1 for the
case p 6= q can be derived from those for p = q, which we show for (54), relation
(55) follows analogously. We conclude from (61) (with r1 in place of r and q in
place of p) that

‖I − Pl : Br
pu(Q) → Lq1(Ω, B

s
qv(Q))‖

≤ ‖I : Br
pu(Q) → Br1

qu(Q)‖‖I − Pl : Br1
qu(Q) → Lq1(Ω, B

s
qv(Q))‖

≤ c 2−(r1−s)l = c 2−(r−s)l+max(1/p−1/q,0)dl.

Theorem 5.2. Assume r, s ∈ R, r > s ≥ 0, 1 ≤ p, q ≤ ∞, 1 ≤ u, v ≤ ∞, and
(r− s)/d > 1/p− 1/q. Then there are constants c1, c2 > 0 such that the following
holds for all n ∈ N. If s > 0, then

c1n
−γ ≤ eran

n (J,BBr
pu(Q), B

s
qv(Q)) ≤ c2n

−γ, (62)

if s = 0, then
c1n

−γ ≤ eran
n (J,BBr

pu(Q), Lq(Q)) ≤ c2n
−γ, (63)

and if s ≥ 0 and 1 < p, q <∞, then

c1n
−γ ≤ eran

n (J,BHr
p(Q), H

s
q (Q)) ≤ c2n

−γ, (64)

where J stands for the respective embedding operator, and

γ =
r − s

d
−
(

1

p
− 1

q

)

+

.

Proof. The upper bounds follow from Proposition 5.1. To obtain the lower
bounds, note that with a suitable choice of ψ, the analogues of (38) also hold
for Br

pu and Hr
p instead of W r

p , see [3], Th. 2.3.2. Therefore, the lower bound
proof of Theorem 3.1 goes through with the proper changes.

Relation (64) gives a partial solution to Problem 25 of Novak and Woźnia-
kowski [12], section 4.3.3. It settles the case of standard information with s ≥ 0.
The case of standard information with s < 0 is studied in [8].

A similar remark as that made at the end of section 3 applies to Theorem 5.2,
as well.

We can also extend Theorem 4.2 to other function spaces via interpolation.
Here, however, a somewhat more involved approach than in the randomized set-
ting is required, since we have to ensure the condition of embedding into C(Q̄)
also for the spaces to be interpolated.

The case s = 0 of Theorem 5.3 below is due to Novak and Triebel [11]. Re-
sults for the case s > 0 are given for the cube by Vyb́ıral [20]. For bounded
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Lipschitz domains these rates were established for the nonlinear sampling num-
bers by Triebel [18]. Our result shows that they also hold for the case of linear
sampling numbers, this way solving Problem 18 of Novak and Woźniakowski [12],
section 4.2.4.

The case of Besov spaces Bs
qv(Q) with s = 0, which is not covered by Theorem

5.3, is studied for the cube in [21].

Theorem 5.3. Under the assumptions of Theorem 5.2 and the additional as-
sumption r/d > 1/p the results (62-64) stated there also hold with edet

n in place of
eran

n .

The derivation of the lower bounds is again quite standard and uses the facts
indicated in the proof of Theorem 5.2. We omit it here. The upper bounds are a
consequence of the following analogue of Proposition 4.1.

Proposition 5.4. Let r, s ∈ R, r > s ≥ 0, 1 ≤ p, q ≤ ∞, 1 ≤ u, v ≤ ∞, and
assume r/d > 1/p and (r − s)/d > 1/p − 1/q. Let Q be a bounded Lipschitz
domain. Let Pl,0 for l ≥ l0 be given by (23) with ω = 0 and the parameters
%, σ ∈ N0 from (2) and (15) satisfying

% > r, σ > r + 1. (65)

Then there is a constant c > 0 such that for all l ≥ l0 the following hold. For
s > 0

sup
f∈BBr

pu(Q)

‖f − Pl,0f‖Bs
qv(Q) ≤ c 2−(r−s)l+max(1/p−1/q,0)dl, (66)

for s = 0
sup

f∈BBr
pu(Q)

‖f − Pl,0f‖Lq(Q) ≤ c 2−rl+max(1/p−1/q,0)dl, (67)

and for s ≥ 0, 1 < p, q <∞

sup
f∈BHr

p(Q)

‖f − Pl,0f‖Hs
q (Q) ≤ c 2−(r−s)l+max(1/p−1/q,0)dl. (68)

Proof. The case s = 0 follows from results of Novak and Triebel [11] (see also [19],
section 4.3.3). They prove their Proposition 22, or more precisely, relations (4.30)
and (4.35), under certain general assumptions on the approximating operators, see
[11], relations (4.22) – (4.25) and (2.67). That these conditions are also satisfied
for Pl,0 given by (24) follows from (7), (16), (20), (21), (23), and (65) (condition
(4.24) of [11] is satisfied with a general constant c > 0 instead of constant 2,
which, however, does not affect the result).

Now we deal with the case s > 0. Similarly to the randomized setting we
discuss only the case p = q, the general case follows by the same embedding
argument as in the proof of Proposition 5.1.
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First we assume r > d. Put r0 = dre− 1, r1 = brc+ 1. Then d ≤ r0 < r < r1,
and the embedding condition (41) is satisfied for r0 and all 1 ≤ p ≤ ∞. We have
from (42)

‖I − Pl,0 : W ri
p (Q) →W ri

p (Q)‖ ≤ c (i = 0, 1). (69)

Choose θ in such a way that r = (1 − θ)r0 + θr1. Using (47–48), (50–51), we
interpolate (69) and get

‖I − Pl,0 : Br
pu(Q) → Br

pu(Q)‖ ≤ c. (70)

By (67),
‖I − Pl,0 : Br

pu(Q) → Lp(Q)‖ ≤ c 2−rl. (71)

Setting θ = s/r and interpolating (70) and (71), we obtain (66) for r > d. The
case of Bessel potential spaces (68) can be derived in an analogous way, using
complex interpolation and the (already proven) case s = 0 of (68).

Next we consider the case r ≤ d, p = ∞ (thus, we have to deal with the case
of Besov spaces only). Here we note that

‖I − Pl,0 : C(Q̄) → L∞(Q)‖ ≤ c, (72)

which easily follows from the definition (24) of Pl,0 and from (16) and (20). Put
r1 = brc + 1. By (42),

‖I − Pl,0 : W r1
∞ (Q) → W r1

∞ (Q)‖ ≤ c. (73)

Taking into account (48) and (49), interpolation of (72) and (73) gives

‖I − Pl,0 : Br
∞,u(Q) → Br

∞,u(Q)‖ ≤ c. (74)

Using again (67), we have

‖I − Pl,0 : Br
∞,u(Q) → L∞(Q)‖ ≤ c 2−rl, (75)

and interpolating (74) and (75) with θ = s/r we get (66).
Finally, let r ≤ d and 1 < p < ∞ (the case p = 1 is excluded by the

assumption r/d > 1/p). Here we start with the case of Bessel potential spaces.
We put r1 = dre. Setting s0 = dse − 1, s1 = bsc + 1, we have r1 ≥ s1 > s0, and
by (42),

‖I − Pl,0 : W r1
p (Q) → W si

p (Q)‖ ≤ c 2−(r1−si)l (i = 0, 1). (76)

Choosing 0 < θ < 1 in such a way that s = (1 − θ)s0 + θs1 and using (47) and
(52), complex interpolation of (76) gives

‖I − Pl,0 : W r1
p (Q) → Hs

p(Q)‖ ≤ c 2−(r1−s)l. (77)
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In view of (47), this proves the case r = r1 = dre. Now we assume r < r1 and
choose r0 ∈ R, 0 < r0 < r sufficiently small such that

r − s >
r1 − r

r1 − r0
r0. (78)

Then put

θ =
r − r0
r1 − r0

, s0 = 0 s1 =
s

θ
, p0 =

rp

r0
, p1 =

rp

r1
. (79)

It is readily checked that

r = (1 − θ)r0 + θr1, s = (1 − θ)s0 + θs1,
1

p
=

1 − θ

p0

+
θ

p1

. (80)

Furthermore, since r/d > 1/p, it follows that

r0
d
>

1

p0
,

r1
d
>

1

p1
,

and, because of r0 < r1 ≤ d, this together with (79) implies 1 < p1 < p0 < ∞.
Finally, (78) and (80) give

θr1 = r − (1 − θ)r0 = r − r1 − r

r1 − r0
r0 > s = θs1,

so r1 > s1. From (77) we conclude

‖I − Pl,0 : W r1
p1

(Q) → Hs1
p1

(Q)‖ ≤ c 2−(r1−s1)l.

By the already shown case of s = s0 = 0 of (68) we have

‖I − Pl,0 : W r0
p0

(Q) → Hs0
p0

(Q)‖ ≤ c 2−(r0−s0)l.

Complex interpolation together with (47), (52), and (80) gives

‖I − Pl,0 : Hr
p(Q) → Hs

p(Q)‖ ≤ c 2−(r−s)l.

It remains to consider the case of Besov spaces for r ≤ d and 1 < p < ∞. But
this can be derived from the already completed case of Bessel potential spaces as
follows. We choose si, ri ∈ R (i = 0, 1), close to s and r, respectively, in such a
way that

0 < s0 < s < s1 < r0 < r < r1, % > r1, σ > r1 + 1. (81)

By (68),

‖I − Pl,0 : Hri
p (Q) → Hsj

p (Q)‖ ≤ c 2−(ri−sj)l (i, j ∈ {0, 1}). (82)
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Using (50), (51), and (81), real interpolation of (82) gives for 1 ≤ u ≤ ∞

‖I − Pl,0 : Br
pu(Q) → Hsj

p (Q)‖ ≤ c 2−(r−sj)l (j = 0, 1). (83)

Interpolating (83) in a respective way yields for 1 ≤ v ≤ ∞

‖I − Pl,0 : Br
pu(Q) → Bs

pv(Q)‖ ≤ c 2−(r−s)l.

Remark. In accordance with the cited literature, in this chapter we considered
only spaces of complex-valued functions. The statements of the propositions and
theorems remain valid, however, also for the case of real-valued functions. This
can be derived in a formal way from the complex case using the following facts.
For the involved function spaces X we have

f ∈ X iff Re f, Im f ∈ X

and
c1(‖Re f‖X + ‖Im f‖X) ≤ ‖f‖X ≤ c2(‖Re f‖X + ‖Im f‖X),

which is a consequence of [19], Th. 1.118. Moreover, the involved approximating
operators map real-valued functions to real-valued functions, and finally, the lower
bound arguments can be based on real functions.

6 An application to elliptic PDE

The results obtained above have some direct consequences for the information
complexity of solution of elliptic partial differential equations (see [6], [7], and
the references in there, for previous results in this direction). Let d,m ∈ N,
d ≥ 2, let Q ⊂ R

d be a bounded C∞ domain (see, e.g., [15] for the definition).
We consider the homogeneous boundary value problem

L z(x) = f(x) (x ∈ Q0) (84)

Bjz(x) = 0 (x ∈ ∂Q, j = 1, . . . ,m), (85)

where L is a differential operator of order 2m on Q, that is

L z =
∑

|α|≤2m

aα(x)Dαz(x),

and the Bj are boundary operators

Bjz =
∑

|α|≤mj

bjα(x)Dαz(x), (86)
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where mj ≤ 2m − 1 and aα ∈ C∞(Q) and bjα ∈ C∞(∂Q) are complex-valued
infinitely differentiable functions.

We asssume that (L , {Bj}) is regular elliptic ([15], 5.2.1/4), and that 0 is
not in the spectrum of L . By [15], Theorem 5.5.1(b) it follows that L is an
isomorphism from W s+2m

q,{Bj}
(Q) (the subspace of W s+2m

q (Q) consisting of those

functions which satisfy (85)) to W s
q (Q) for s ∈ N0 and 1 < q <∞. We define the

solution operator S = L −1J of the elliptic problem (84–85) as follows:

S : W r
p (Q)

J−→ W s
q (Q)

L −1

−→ W s+2m
q (Q).

This means, we seek to approximate the full solution u, for right-hand sides f from
W r

p (Q). Note that we consider S as an operator into W s+2m
q (Q). In particular,

the error is measured in the norm of W s+2m
q (Q).

Corollary 6.1. Let d ∈ N, d ≥ 2, r, s ∈ N0, 1 ≤ p ≤ ∞, 1 < q <∞, and assume
that (r− s)/d ≥ max(1/p− 1/q, 0). Then there are constants c1, c2 > 0 such that
for all n ∈ N the following hold:

c1n
−γ ≤ eran

n (S,BW r
p (Q),W

s+2m
q (Q)) ≤ c2n

−γ

with

γ =
r − s

d
−
(

1

p
− 1

q

)

+

.

If, in addition W r
p (Q) is embedded into C(Q̄), that is, (41) holds, we also have

c1n
−γ ≤ edet

n (S,BW r
p (Q),W

s+2m
q (Q)) ≤ c2n

−γ.

If (41) does not hold, then

c1 ≤ edet
n (S,BW r

p (Q),W
s+2m
q (Q)) ≤ c2.

Proof. The upper bounds are direct consequences of the above mentioned iso-
morphism property of L and Theorems 3.1, 4.2, and 4.3. For the lower bound
we additionally remark that by [15], Theorem 5.5.2(b), W s+2m

q,{Bj}
(Q) is a com-

plemented subspace of W s+2m
q (Q), hence, up to a constant factor, algorithms

with values in W s+2m
q (Q) cannot give a smaller error than those with values in

W s+2m
q,{Bj}

(Q). Therefore, also the lower bounds follow from the isomorphism prop-

erty and Theorems 3.1, 4.2, and 4.3.
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