
The Randomized Complexity of Indefinite

Integration

Stefan Heinrich, Bernhard Milla
Department of Computer Science

University of Kaiserslautern
D-67653 Kaiserslautern, Germany

e-mail: heinrich[milla]@informatik.uni-kl.de

Abstract

We show that for functions f ∈ Lp([0, 1]d), where 1 ≤ p ≤ ∞, the family
of integrals ∫

[0,x]
f(t)dt (x = (x1, . . . , xd) ∈ [0, 1]d)

can be approximated by a randomized algorithm uniformly over x ∈ [0, 1]d

with the same rate n−1+1/min(p,2) as the optimal rate for a single integral,
where n is the number of samples. We present two algorithms, one being
of optimal order, the other up to logarithmic factors. We also prove lower
bounds and discuss the dependence of the constants in the error estimates
on the dimension.

1 Introduction

It is well-known that optimal randomized algorithms for integration of Lp([0, 1]d)
functions with n samples have error rate n−1+1/min(p,2) [14, 4]. In this paper we
show that the same rate can be obtained for the simultaneous computation of all
integrals ∫

[0,x]

f(t)dt

uniformly over x ∈ [0, 1]d. Thus, we want to approximate the indefinite integral,
the anti-derivative. While numerous papers study the complexity of definite
integrals, the case of indefinite integration has not been considered so far.

We propose and analyze two algorithms and prove lower bounds. The first
algorithm is the simple sampling algorithm – a function valued version of the
standard Monte Carlo method. The second one is a combination of the Smolyak
algorithm with simultaneous Monte Carlo sampling. Both algorithms need O(n)

1

function values and produce an approximation which is a linear combination of
O(n) functions.

The first one is of optimal order for all 1 ≤ p ≤ ∞ and, moreover, the
constants in the error estimates depend polynomially on the dimension. Thus, it
proves polynomial tractability of the problem in the randomized setting. This is
noteworthy since so far only very few unweighted problems (i.e., all dimensions
play the same role) are known to share polynomial tractability (see, e.g., the
comment at the top of page 39 of [17]).

The second algorithm is of optimal order for 2 < p ≤ ∞, while for 1 ≤ p ≤ 2
additional logarithmic factors occur. The second algorithm, however, has the
advantage that once the approximation is established, any value of it can be
computed in only O(1) operations for 2 < p ≤ ∞ and in O((logn)d−1) for
1 ≤ p ≤ 2, while in the case of the first algorithm this takes Θ(n). The simple
sampling algorithm, on the other hand, can be made more efficient for d fixed
(and small), see Section 6.2. Still, for 2 < p ≤ ∞ the Smolyak-Monte Carlo
algorithm has better efficiency estimates, see the discussion at the end of Section
6.2.

We also present a sharp in n and dimension independent lower bound. Fur-
thermore, for p > 1, we prove lower bounds which show that for fixed ε > 0 the
dependence of the minimal number of samples of an algorithm with error ≤ ε on
the dimension is linear.

Let us note that the rate of deterministic algorithms is Θ(1) for all p with
1 ≤ p ≤ ∞, thus there is no convergence to zero at all, see Section 6.1. For
comparison, the optimal rate for randomized algorithms, is n−1+1/min(p,2), so it is
n−1/2 for 2 ≤ p ≤ ∞, but in the interval 1 < p < 2 the exponent goes to zero as p
approaches 1. Finally, for p = 1 the rate of convergence of randomized algorithms
is Θ(1), as well.

The paper is organized in the following way: Section 2 contains notation and
preliminaries, the simple sampling algorithm is described and analyzed in Section
3, the Smolyak-Monte Carlo algorithm in Section 4. Lower bounds are presented
in Section 5, and in Section 6 we comment on the deterministic setting, present an
efficient way of computing point evaluations for the simple sampling algorithm,
and discuss measurability issues.

2 Notation and Preliminaries

We write N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }. The logarithm log is always
meant as log2. All functions and Banach spaces considered in this paper are
assumed to be defined over the same field of scalars K ∈ {R,C}. For a Banach
space X we denote the unit ball by BX and the dual space by X∗. Given Banach
spaces X,Y , the space of all bounded linear operators from X to Y is denoted
by L (X,Y), and, if X = Y , by L (X).

2

Let d ∈ N, Q = [0, 1]d, let C(Q) denote the space of continuous functions on
Q and, for 1 ≤ p ≤ ∞, let Lp(Q) be the space of (equivalence classes of) p-th
power integrable with respect to the Lebesgue measure functions, both equipped
with their usual norm. Let F(Q) denote the linear space of all functions on Q
and let B0(Q) be the space of all bounded Lebesgue measurable functions (not
equivalence classes) on Q with supremum norm.

Let 1 ≤ p ≤ ∞. We study S(d) ∈ L (Lp(Q), C(Q)) given by

(S(d)f)(x) =

∫

[0,x]

f(t)dt, (x = (x1, . . . , xd) ∈ Q),

where [0, x] = [0, x1] × ...× [0, xd]. Note that

‖S(d) : Lp (Q) → C(Q)‖ = 1 (1)

(the problem is normalized).
Throughout the paper the symbols c, c0, c1, . . . denote positive constants which

are either absolute or may depend only on p and p1. Constants which may also de-
pend on d are denoted by c(d), c0(d), etc. The same symbol may denote different
constants (also when they appear in a sequence of relations).

3 The simple sampling algorithm

We have

(S(d)f)(x) =

∫

[0,1]d
χ[0,x](t)f(t)dt.

We introduce the simple sampling algorithm as follows: Let n ∈ N and let (ξi)
n
i=1

be independent, uniformly distributed on Q = [0, 1]d random variables on some
probability space (Ω,Σ,P). We assume without loss of generality that (Ω,Σ,P)
is complete, meaning that D ⊆ D1 ∈ Σ and P(D1) = 0 imply D ∈ Σ (if (Ω,Σ,P)
is not complete, we replace it by its completion). Then we approximate for
f ∈ Lp(Q)

S(d)f ≈ A1
nf,

with A1
nf given by

(A1
nf)(x) =

1

n

n∑

i=1

χ[0,x](ξi)f(ξi) (x ∈ Q). (2)

We have

A1
nf =

1

n

n∑

i=1

f(ξi)χ[ξi,1̄], (3)

where
1̄ = (1, 1, . . . , 1

︸ ︷︷ ︸

d

).

3

Since

(S(d)f)(x) =

∫

[0,1]d
f(t)χ[t,1̄](x)dt (x ∈ [0, 1]d),

the algorithm can be considered as a function-valued version of the standard
Monte Carlo method for integration. Let us mention that the simple sampling
algorithm produces discontinuous in x functions, so we consider it as mapping
into B0(Q) and as an approximation to S(d) : Lp(Q) → B0(Q), where we identify
C(Q) in the canonical way with a subspace of B0(Q). Furthermore, note that
A1

n is lacking certain measurability properties, see the beginning of Section 5 and
Section 6.3 for details. Nevertheless the mapping

ω → ‖S(d)f − A1
n,ωf‖B0(Q)

is Σ-measurable, where we write

A1
n,ωf =

1

n

n∑

i=1

f(ξi(ω))χ[ξi(ω),1̄] (ω ∈ Ω) (4)

to emphasize the dependence on ω ∈ Ω. Indeed, this follows from

‖S(d)f − A1
n,ωf‖B0(Q) = sup

x∈[0,1]d∩Qd

∣
∣(S(d)f)(x) − (A1

n,ωf)(x)
∣
∣ (ω ∈ Ω)

(with Q the rationals), which, in turn, is a simple consequence of (4). Thus
it makes sense to consider the p1-st moment E ‖S(d)f − A1

nf‖
p1

B0(Q) for suitable
1 ≤ p1 <∞, as we will do below.

We also introduce a slight modification of this algorithm, which has values in
C([0, 1]d) and possesses the desired measurability properties. For this purpose we

introduce for l ∈ N the function ϕ
(1)
l ∈ C([0, 1]2) by

ϕ
(1)
l (x, t) =

1 if t ≤ x

1 − l(t− x) if x < t < x+ 1
l

0 if x+ 1
l
≤ t.

(5)

Define ϕ
(d)
l ∈ C([0, 1]2d) by setting for x = (x1, . . . , xd) and t = (t1, . . . , td)

ϕ
(d)
l (x, t) =

d∏

j=1

ϕ
(1)
l (xj, tj). (6)

Now we put

A2
n,lf =

1

n

n∑

i=1

ϕ
(d)
l (· , ξi)f(ξi). (7)

Let us first consider the cost of computing A1
nf and A2

n,lf . Each of them needs
dn independent uniformly distributed on [0, 1] random variables and n function

4

values to determine the respective representation (3) and (7). Next we have a
look at computing (A1

nf) (x) and
(
A2

n,lf
)
(x) for any given x ∈ Q. Since the

supports of the involved functions can overlap in an arbitrary way, we need cdn
operations to compute term after term in (3), and similarly in (7). More efficient
approaches for fixed (small) d are discussed in Section 6.2.

Now we pass to the error analysis. For m ∈ N let Γm be the equidistant grid
on Q = [0, 1]d with mesh-size 1/m. We need the following (bracketing) lemma.

Lemma 3.1. Let 1 < p ≤ ∞, m ∈ N, and f ∈ Lp(Q) with f ≥ 0. Let ε0 > 0 and
assume ψ : [0, 1]2d → R is a measurable function satisfying the following: For
each x ∈ [0, 1]d there exist y, z ∈ Γm with

y ≤ z, (8)

|[0, z]| − |[0, y]| ≤ ε0, (9)

χ[0,y](t) ≤ ψ(x, t) ≤ χ[0,z](t) (t ∈ [0, 1]d). (10)

Then the following holds P-almost surely:

sup
x∈Q

∣
∣
∣
∣
∣

∫

[0,x]

f(t)dt−
1

n

n∑

i=1

ψ(x, ξi)f(ξi)

∣
∣
∣
∣
∣

≤ ε
1/p∗

0 ‖f‖Lp(Q) + sup
x∈Γm

∣
∣
∣
∣
∣

∫

[0,x]

f(t)dt−
1

n

n∑

i=1

χ[0,x](ξi)f(ξi)

∣
∣
∣
∣
∣
, (11)

where p∗ is given by 1/p+ 1/p∗ = 1.

Proof. We assume that the values f(ξi), 1 ≤ i ≤ n, are defined, which is the case
P-almost surely. Let x ∈ Q and choose y, z ∈ Γm satisfying (8–10). Then

∫

[0,x]

f(t)dt−
1

n

n∑

i=1

ψ(x, ξi)f(ξi)

≤

∫

[0,z]\[0,y]

f(t)dt +

∫

[0,y]

f(t)dt−
1

n

n∑

i=1

χ[0,y](ξi)f(ξi).

Similarly

−

∫

[0,x]

f(t)dt +
1

n

n∑

i=1

ψ(x, ξi)f(ξi)

≤

∫

[0,z]\[0,y]

f(t)dt−

∫

[0,z]

f(t)dt +
1

n

n∑

i=1

χ[0,z](ξi)f(ξi).

Thus,
∣
∣
∣
∣
∣

∫

[0,x]

f(t)dt−
1

n

n∑

i=1

ψ(x, ξi)f(ξi)

∣
∣
∣
∣
∣

≤

∫

[0,z]\[0,y]

f(t)dt + max
u∈{y,z}

∣
∣
∣
∣
∣

∫

[0,u]

f(t)dt−
1

n

n∑

i=1

χ[0,u](ξi)f(ξi)

∣
∣
∣
∣
∣
. (12)

5

Moreover,

∫

[0,z]\[0,y]

f(t)dt ≤ (|[0, z]| − |[0, y]|)1/p∗‖f‖Lp(Q) ≤ ε
1/p∗

0 ‖f‖Lp(Q). (13)

Combining (12) and (13) yields (11).

Next we recall some facts on Banach space valued random variables which will
be needed in the subsequent analysis. Let X and Y be Banach spaces and let
T ∈ L (X,Y). Given p with 1 ≤ p ≤ 2, the type p constant τp(T) of the operator
T is the smallest c with 0 < c ≤ +∞, such that for all n and all sequences
(xi)

n
i=1 ⊂ X,

E

∥
∥
∥

n∑

i=1

εiTxi

∥
∥
∥

p

≤ cp
n∑

i=1

‖xi‖
p, (14)

where (εi) denotes a sequence of independent symmetric Bernoulli random vari-
ables on some probability space (Ω,Σ,P), i.e., P{εi = 1} = P{εi = −1} = 1

2
. The

operator T is said to be of type p if τp(T) < ∞. Each operator is of type 1. A
Banach space X is of type p iff the identity operator of X is of type p. We refer
to [11], ch. 9 for definitions and basic facts on the type of Banach spaces. The
operator analogues are straightforward.

We will use the following result. The Banach space case of it with p1 = p is
contained in Proposition 9.11 of [11]. The proof given there easily extends to the
case of general p1, as shown in Lemma 2.1 of [8]. Here we note that the operator
version of this lemma has literally the same proof, so we omit it.

Lemma 3.2. Let 1 ≤ p ≤ 2, p ≤ p1 < ∞. Then there is a constant c > 0
such that for all Banach spaces X,Y , each operator T ∈ L (X,Y) of type p, each
n ∈ N and each sequence of independent, mean zero X-valued random variables
(ηi)

n
i=1 with E ‖ηi‖

p1 <∞ (1 ≤ i ≤ n) the following holds:

(

E

∥
∥
∥

n∑

i=1

Tηi

∥
∥
∥

p1

)1/p1

≤ cτp(T)

(
n∑

i=1

(

E ‖ηi‖
p1

)p/p1

)1/p

.

The next lemma provides the key estimate for the simple sampling algorithm.

Lemma 3.3. Let 1 ≤ p ≤ ∞, 1 ≤ p1 < ∞, p1 ≤ p, and p̄ = min(p, 2). Then
there is a constant c > 0 such that for all d,m, n ∈ N, f ∈ Lp(Q)

(

E sup
x∈Γm

∣
∣
∣
∣
∣

∫

[0,x]

f(t)dt−
1

n

n∑

i=1

χ[0,x](ξi)f(ξi)

∣
∣
∣
∣
∣

p1
)1/p1

≤ cd1−1/p̄n−1+1/p̄‖f‖Lp(Q).

6

Proof. We can assume that p1 ≥ p̄, for smaller p1 the result follows from Hölder’s
inequality. Let Σm be the σ-algebra generated by the collection of sets {[0, x] :
x ∈ Γm} and let M(Q,Σm) be the Banach space of signed measures on Σm, with
the total variation norm. Consider the operator

Jm : M(Q,Σm) → `∞(Γm), Jmµ = (µ([0, x]))x∈Γm
.

By a result of Pisier, see Theorem 1 and Remark 6 of [19], there is a constant
c > 0 depending only on p̄ such that the type p̄ constant of Jm, see (14), satisfies

τp̄(Jm) ≤ cd1−1/p̄ (15)

(this uses the fact that the Vapnik-Červonenkis dimension of the family of sets
{[0, x] : x ∈ [0, 1]d} is d, see, e.g., [3], Cor. 9.2.15). Now let f ∈ Lp(Q). We define
M(Q,Σm)-valued random variables (ηi)

n
i=1 by setting

ηi(B) =

∫

B

f(t)dt− χB(ξi)f(ξi) (B ∈ Σm).

The ηi are independent and of zero mean. Moreover,

(

E ‖ηi‖
p1

M(Q,Σm)

)1/p1

≤

(

E

(∫

Q

|f(t)|dt + |f(ξi)|
)p1
)1/p1

≤ 2‖f‖Lp1(Q).

By Lemma 3.2 and relation (15) we get

(

E sup
x∈Γm

∣
∣
∣
∣
∣

∫

[0,x]

f(t)dt−
1

n

n∑

i=1

χ[0,x](ξi)f(ξi)

∣
∣
∣
∣
∣

p1
)1/p1

= n−1

(

E

∥
∥
∥

n∑

i=1

Jmηi

∥
∥
∥

p1

`∞(Γm)

)1/p1

≤ cd1−1/p̄n−1

(
n∑

i=1

(

E ‖ηi‖
p1

M(Q,Σm)

)p̄/p1

)1/p̄

≤ cd1−1/p̄n−1+1/p̄‖f‖Lp1 (Q).

Theorem 3.4. Let 1 ≤ p ≤ ∞, 1 ≤ p1 < ∞, p1 ≤ p, and p̄ = min(p, 2). Then
there is a constant c > 0 such that for all d, n, l ∈ N, l ≥ 2dn, f ∈ Lp(Q),

(

E ‖S(d)f − A1
nf‖

p1

B0(Q)

)1/p1

(

E ‖S(d)f − A2
n,lf‖

p1

C(Q)

)1/p1

≤ cd1−1/p̄n−1+1/p̄‖f‖Lp(Q).

7

Proof. For p = 1 the result follows trivially from the definitions (2) and (7) of A1
n

and A2
n,l. So let p > 1. We can assume f ≥ 0, otherwise we consider positive and

negative part of f separately. Put m = 2dn and observe first that the choice

ψ(x, t) = χ[0,x](t)

needed for A1 satisfies the assumptions (8–10) of Lemma 3.1 with ε0 = d/m. In-
deed, given x ∈ [0, 1]d we can choose y = (y1, . . . , yd) ∈ Γm and z = (z1, . . . , zd) ∈
Γm so that (10) holds and

yj +
1

m
= zj (j = 1, . . . , d).

We have

|[0, z]| − |[0, y]|

≤
d∑

j=1

|y1 . . . yj−1zjzj+1 . . . zd − y1 . . . yj−1yjzj+1 . . . zd| ≤
d

m
. (16)

Similarly, for
ψ(x, t) = ϕ

(d)
l (x, t),

see (5–6), with l ≥ m, we can choose appropriate y and z with

yj +
2

m
= zj (j = 1, . . . , d),

implying |[0, z]| − |[0, y]| ≤ 2d/m. We obtain from Lemmas 3.1 and 3.3
(

E ‖S(d)f − A1
nf‖

p1

B0(Q)

)1/p1

(

E ‖S(d)f − A2
n,lf‖

p1

C(Q)

)1/p1

≤ n−1+1/p‖f‖Lp(Q) + cd1−1/p̄n−1+1/p̄‖f‖Lp(Q)

≤ cd1−1/p̄n−1+1/p̄‖f‖Lp(Q).

It follows that for 1 < p ≤ ∞ the family of problems
(
S(d) : BLp([0,1]d) → C([0, 1]d)

)

d∈N

is polynomially tractable in the randomized setting, for the absolute and the
normalized error criterion (which in this case is the same, because of (1)), see [17]
for the definitions. We note that most of the polynomially tractable problems
considered in [17, 18] are weighted problems (i.e., with decreasing dependence
on subsequent dimensions). This way we obtained a new family of unweighted
polynomially tractable problems. Furthermore, most problems analyzed in [17,
18] are defined between Hilbert spaces, while here we study a Banach space
situation.

8

4 The Smolyak-Monte Carlo algorithm

First we introduce the Smolyak algorithm in a form needed for our later pur-
poses. The Smolyak algorithm is by now a standard technique of treating high-
dimensional problems, in particular those of tensor product form. The basic idea
of the algorithm is the balancing of fine approximation in certain dimensions with
rough approximation in others. For further background we refer to [17, 18] and
the references therein. For each m ∈ N with m ≥ 2 let

(Pm,l)
∞
l=0 ⊂ L (C([0, 1]))

be a sequence of operators of the form

Pm,lf =

nm,l∑

i=1

f(xm,l,i)ψm,l,i (17)

with xm,l,i ∈ [0, 1] and ψm,l,i ∈ C([0, 1]), ψm,l,i 6= 0 (i = 1, . . . , nm,l, l ∈ N0). We
assume w.l.o.g. that the points {xm,l,i : i = 1, . . . , nm,l} are pairwise different
and ordered increasingly,

xm,l,1 < xm,l,2 < . . . < xm,l,nm,l
.

Furthermore, we define xm,l,0 = 0 and xm,l,nm,l+1 = 1.
We assume the following: There are constants c1−4 > 0 such that for all m ∈ N

with m ≥ 2 and for all l ∈ N0

nm,l ≤ c1m
l (18)

max
1≤i≤nm,l+1

(xm,l,i − xm,l,i−1) ≤ c2m
−l (19)

‖Pm,l‖L (C([0,1])) ≤ c3 (20)

sup
f∈B

W1
p ([0,1])

‖f − Pm,lf‖C([0,1]) ≤ c4m
−(1−1/p)l. (21)

Here W 1
p ([0, 1]) stands for the space of all functions in Lp([0, 1]) whose first deriva-

tive, in the distributional sense, also belongs to Lp([0, 1]), endowed with the norm

‖f‖W 1
p ([0,1]) =

(

‖f‖p
Lp([0,1]) + ‖f ′‖p

Lp([0,1])

)1/p

(and the usual modification for p = ∞).
Operators with these properties are easily constructed. For example, given m,

we let Pm,l be piecewise linear interpolation, applied to the subdivision of [0, 1]
into ml equal length subintervals. For this choice it is well-known that (18–21)
hold.

9

We fix any m ∈ N, m ≥ 2. In the sequel m will be an algorithm parameter,
and for convenience of notation we drop the subscript m and write Pl, nl, xl,i,
ψl,i.

For the definition of the Smolyak algorithm in the case d > 1 and for the
subsequent analysis of the algorithm we use tensor products. Such an approach
is usually applied in the case that both the source and the target space are Hilbert
spaces. Here we study a Banach space situation, the source space being Lp(Q)
(1 ≤ p ≤ ∞), the target space C(Q). For this purpose we use Banach space
tensor norms, as recently done in [20].

The tensor product structure of S(d) in the Banach space case is more subtle
than in the Hilbert case. In particular, we have to consider appropriate tensor
norms to relate the spaces C([0, 1]d) and Lp([0, 1]d) on the d-dimensional cube to
tensor products of the corresponding spaces on the unit interval. Moreover, these
tensor products should have the property that the norm of the tensor product of
operators is equal to the product of the norms of the operators. We present the
needed notation and facts below. Further details and proofs can be found in [2]
and [12].

Let X ⊗ Y be the algebraic tensor product of Banach spaces X and Y . For
z =

∑n
i=1 xi ⊗ yi ∈ X ⊗ Y define

λ(z) = sup
u∈BX∗ , v∈BY ∗

∣
∣
∣

n∑

i=1

〈xi, u〉 〈yi, v〉
∣
∣
∣

and for 1 ≤ p <∞, with p∗ satisfying 1/p+ 1/p∗ = 1,

αp(z) = inf

{
(n∑

i=1

‖xi‖
p
)1/p

sup
v∈BY ∗

(n∑

i=1

| 〈yi, v〉 |
p∗
)1/p∗

}

(with the usual modification for p∗ = ∞), where the infimum is taken over all
representations z =

∑n
i=1 xi ⊗ yi. We have for 1 ≤ p1 ≤ p <∞ and z ∈ X ⊗ Y

λ(z) ≤ αp(z) ≤ αp1(z). (22)

For θ ∈ {λ, αp (1 ≤ p < ∞)}, the tensor product X ⊗θ Y is defined as the
completion of X ⊗ Y with respect to the norm θ.

We use for d > 1 the canonical isometric identifications

C([0, 1]) ⊗λ C([0, 1]d−1) = C([0, 1]d), (23)

for 1 ≤ p <∞
Lp([0, 1]) ⊗αp

Lp([0, 1]d−1) = Lp([0, 1]d), (24)

and the canonical isometric embedding

L∞([0, 1]) ⊗λ L∞([0, 1]d−1) ⊂ L∞([0, 1]d) (25)

10

(which is a proper embedding).
Given Banach spacesX1, X2, Y1, Y2, operators T1 ∈ L (X1, Y1), T2 ∈ L (X2, Y2),

and two tensor norms

θ1, θ2 ∈ {λ, αp (1 ≤ p <∞)}, θ1 ≥ θ2,

the algebraic tensor product

T1 ⊗ T2 : X1 ⊗X2 → Y1 ⊗ Y2

extends to a bounded linear operator (we use the same symbol for the extension)

T1 ⊗ T2 ∈ L (X1 ⊗θ1 X2, Y1 ⊗θ2 Y2) (26)

with

‖T1 ⊗ T2 : X1 ⊗θ1 X2 → Y1 ⊗θ2 Y2‖ = ‖T1 : X1 → Y1‖ ‖T2 : X2 → Y2‖. (27)

Let I(d) denote the identity operator on C([0, 1]d). In the sense of (23) and (26)
we have

I(d) = I(1) ⊗ I(d−1),

furthermore, taking into account (24), we have for 1 ≤ p <∞,

S(d) = S(1) ⊗ S(d−1),

and finally, based on (25), for p = ∞,

S(d)
∣
∣
L∞([0,1])⊗λL∞([0,1]d−1)

= S(1) ⊗ S(d−1).

Now we are ready to define operators P
(d)
L ∈ L (C([0, 1]d)) for L ∈ N0 by

induction over d. For d = 1 we put

P
(1)
L = PL.

For d > 1 we use the identification (23) and set

P
(d)
L =

L∑

l=0

(Pl − Pl−1) ⊗ P
(d−1)
L−l

with the convention that P−1 := 0. For the sequel we also fix L, which will be
another algorithm parameter. The first step in the construction of our algorithm
is the approximation of S(d)f by P

(d)
L S(d)f .

Next we are going to approximate P
(d)
L S(d)f . For this purpose let us take a

closer look at the structure of the operator P
(d)
L . Let for l ∈ N0

Γl = {xl,i : 1 ≤ i ≤ nl}, Γ̂l = Γl−1 ∪ Γl, (28)

11

where we set Γ−1 = ∅. Let the points of Γ̂l (l ∈ N0) be denoted in increasing
order by

x̂l,1 < x̂l,2 < . . . < x̂l,n̂l
, (29)

where n̂l = |Γ̂l|. Now the operator Pl − Pl−1 can be written as

(Pl − Pl−1)f =

nl∑

j=1

f(xl,j)ψl,j −

nl−1∑

j=1

f(xl−1,j)ψl−1,j

=

n̂l∑

i=1

f(x̂l,i)ψ̂l,i (30)

with n−1 = 0 and

ψ̂l,i =

ψl,j if x̂l,i = xl,j ∈ Γl \ Γl−1

−ψl−1,j if x̂l,i = xl−1,j ∈ Γl−1 \ Γl

ψl,j1 − ψl−1,j2 if x̂l,i = xl,j1 = xl−1,j2 ∈ Γl−1 ∩ Γl.

We can split the operator P
(d)
L as follows:

P
(d)
L =

∑

l̄∈Nd
0, |l̄|=L

Ul̄ (31)

where for l̄ = (l1, . . . , ld) we set |l̄| = l1 + · · · + ld and

Ul̄ = (Pl1 − Pl1−1) ⊗ · · · ⊗ (Pld−1
− Pld−1−1) ⊗ Pld. (32)

Define for l̄ = (l1, . . . , ld) ∈ Nd
0

n̄l̄ = (n̂l1 , . . . , n̂ld−1
, nld)

Il̄ = {ī ∈ Nd : 1̄ ≤ ī ≤ n̄l̄}

with componentwise inequalities in the last line. Furthermore, for 0 ≤ ī ≤ n̄l̄ we
set

xl̄,̄i = (x̂l1,i1, . . . , x̂ld−1,id−1
, xld,id) ∈ [0, 1]d,

where we define x̂l,0 = 0. Moreover, for ī ∈ Il̄ we put

ψl̄,̄i = ψ̂l1,i1 ⊗ · · · ⊗ ψ̂ld−1,id−1
⊗ ψld,id ∈ C([0, 1]d)

Ql̄,̄i = [xl̄,̄i−1̄, xl̄,̄i]

= [x̂l1,i1−1, x̂l1,i1] × · · · × [x̂ld−1,id−1−1, x̂ld−1,id−1
] × [xld,id−1, xld,id].

Combining (23), (17), (30), and (32), we obtain

Ul̄ f =
∑

ī∈Il̄

f(xl̄,̄i)ψl̄,̄i (f ∈ C([0, 1]d)), (33)

12

hence

Ul̄S
(d)f =

∑

ī∈Il̄

(
∫

[0,xl̄,̄i]

f(t)dt

)

ψl̄,̄i

=
∑

ī∈Il̄

(
∑

1̄≤j̄≤ī

∫

Ql̄,j̄

f(t)dt

)

ψl̄,̄i .

We are ready to define the Smolyak-Monte Carlo algorithm. Let ξl̄,̄i (|l̄| = L, 1̄ ≤
ī ≤ n̄l̄) be independent random variables on a complete probability space (Ω,Σ,P)
such that ξl̄,̄i is uniformly distributed on Ql̄,̄i. Then we approximate

Ul̄S
(d)f ≈ Vl̄f :=

∑

ī∈Il̄

(
∑

1̄≤j̄≤ī

|Ql̄,j̄ |f(ξl̄,j̄)

)

ψl̄,̄i (34)

and thus
S(d)f ≈ A3

m,Lf :=
∑

l̄∈Nd
0 , |l̄|=L

Vl̄f. (35)

Now we analyze the error, describe an efficient way to compute the needed quan-
tities and estimate its cost. Let 1 ≤ p1 <∞, p1 ≤ p. We shall estimate the p1-st
moment of the error. By the triangle inequality, we have

(E ‖S(d)f − A3
m,Lf‖

p1)1/p1

≤ ‖S(d)f − P
(d)
L S(d)f‖ + (E ‖P

(d)
L S(d)f − A3

m,Lf‖
p1)1/p1. (36)

In the following result we summarize the tensor product norm estimates which
we will use below. The case p = ∞ is particularly important, since in this case,
according to (25), the tensor product of the spaces L∞([0, 1]) and L∞([0, 1]d−1) is
only a subspace of L∞([0, 1]d). The lemma ensures that we can still use product
norm estimates.

Lemma 4.1. For 1 ≤ p ≤ ∞, d > 1, and any T1 ∈ L (C([0, 1])) and T2 ∈
L (C([0, 1]d−1)) we have

‖(T1 ⊗ T2)S
(d) : Lp([0, 1]d) → C([0, 1]d)‖

= ‖T1S
(1) : Lp([0, 1]) → C([0, 1])‖

× ‖T2S
(d−1) : Lp([0, 1]d−1) → C([0, 1]d−1)‖. (37)

Proof. For 1 ≤ p < ∞ this follows directly from (22), (27), (23), and (24). For
the case p = ∞ we note that

BL∞([0,1])⊗λL∞([0,1]d−1)

13

is dense in BL∞([0,1]d) in the norm of L1([0, 1]d). This is easily deduced from the
fact that the linear span of products of characteristic functions χD1 ⊗ χD2, with
D1 ⊆ [0, 1] and D2 ⊆ [0, 1]d−1 measurable, is dense in L1([0, 1]d). Moreover, S(d)

acts continuously from L1([0, 1]d) to C([0, 1]d). Consequently,

‖(T1 ⊗ T2)S
(d) : L∞([0, 1]d) → C([0, 1]d)‖

= ‖(T1 ⊗ T2)(S
(1) ⊗ S(d−1)) : L∞([0, 1]) ⊗λ L∞([0, 1]d−1) → C([0, 1]d)‖,

from which (37) follows.

Now we are ready to estimate the first term on the right-hand side of (36).

Lemma 4.2. Let 1 ≤ p ≤ ∞ and d ∈ N. Then there is a constant c(d) > 0 such
that for all m,L ∈ N0, m ≥ 2,

‖S(d)−P (d)
L S(d) : Lp([0, 1]d) → C([0, 1]d)‖ ≤ c(d)(L+1)d−1m−(1−1/p)(L−d+1). (38)

Proof. First note that

S(1) ∈ L (Lp([0, 1]),W 1
p ([0, 1])),

which, by (21), implies

‖(I(1) − Pl)S
(1) : Lp([0, 1]) → C([0, 1])‖ ≤ cm−(1−1/p)l (39)

and hence,

‖(Pl − Pl−1)S
(1) : Lp([0, 1]) → C([0, 1])‖ ≤ cm−(1−1/p)(l−1). (40)

To prove (38), we argue by induction over the dimension d. For d = 1 the result
is just (39). Now let d > 1 and assume that (38) holds for d− 1. We have

‖S(d) − P
(d)
L S(d)‖

≤ ‖S(d) − (PL ⊗ I(d−1))S(d)‖ + ‖(PL ⊗ I(d−1))S(d) − P
(d)
L S(d)‖. (41)

Using Lemma 4.1, (39), and (1), the first term is estimated as

‖S(d) − (PL ⊗ I(d−1))S(d)‖

= ‖
(
(I(1) − PL) ⊗ I(d−1)

)(
S(1) ⊗ S(d−1)

)
‖

= ‖(I (1) − PL)S(1)‖ ‖S(d−1)‖ ≤ cm−(1−1/p)L.

14

The second term of (41) is treated as follows.

‖
(
PL ⊗ I(d−1)

)
S(d) − P

(d)
L S(d)‖

=
∥
∥
∥

L∑

l=0

(
(Pl − Pl−1) ⊗ I(d−1)

)
S(d) −

L∑

l=0

(
(Pl − Pl−1) ⊗ P

(d−1)
L−l

)
S(d)

∥
∥
∥

=
∥
∥
∥

L∑

l=0

(
(Pl − Pl−1)S

(1)
)
⊗
(
(I(d−1) − P

(d−1)
L−l)S(d−1)

)
∥
∥
∥

≤
L∑

l=0

‖(Pl − Pl−1)S
(1)‖‖(I (d−1) − P

(d−1)
L−l)S(d−1)‖

≤ c c(d− 1)
L∑

l=0

m−(1−1/p)(l−1)(L− l + 1)d−2m−(1−1/p)(L−l−d+2)

≤ c(d)(L+ 1)d−1m−(1−1/p)(L−d+1),

where we used Lemma 4.1, (40) and the induction hypothesis. This proves (38).

For the further analysis we need the following direct consequence of the
Kolmogorov-Doob inequality.

Lemma 4.3. Let 1 < p1 < ∞, k̄ ∈ Nd and let {%ī : 1̄ ≤ ī ≤ k̄} be independent,
mean zero scalar-valued random variables with E |%ī|

p1 <∞ (1̄ ≤ ī ≤ k̄). Then

(

E max
1̄≤ī≤k̄

∣
∣
∣

∑

1̄≤j̄≤ī

%j̄

∣
∣
∣

p1
)1/p1

≤ cd1

(

E

∣
∣
∣

∑

1̄≤j̄≤k̄

%j̄

∣
∣
∣

p1
)1/p1

, (42)

where c1 = p1/(p1 − 1).

Proof. For d = 1 this is just the Kolmogorov-Doob inequality. Now let d ≥ 2 and
assume that (42) holds for d − 1. We write ī = (i′, id), k̄ = (k′, kd), 1̄ = (1′, 1),
define K ′ = {i′ : 1′ ≤ i′ ≤ k′} ⊂ Nd−1 and

ζjd
=

(
∑

1′≤j′≤i′

%j′,jd

)

i′∈K′

∈ `∞(K ′) (1 ≤ jd ≤ kd).

Then
E max

1̄≤ī≤k̄

∣
∣
∣

∑

1̄≤j̄≤ī

%j̄

∣
∣
∣

p1

= E max
1≤id≤kd

∥
∥
∥

∑

1≤jd≤id

ζjd

∥
∥
∥

p1

`∞(K′)
. (43)

Due to the assumptions, (∑

1≤jd≤id

ζjd

)

1≤id≤kd

15

is an `∞(K ′)-valued martingale, hence

(
∥
∥
∥

∑

1≤jd≤id

ζjd

∥
∥
∥

`∞(K′)

)

1≤id≤kd

is a non-negative submartingale. Applying the Kolmogorov-Doob inequality we
get

E max
1≤id≤kd

∥
∥
∥

∑

1≤jd≤id

ζjd

∥
∥
∥

p1

`∞(K′)
≤ cp1

1 E

∥
∥
∥

∑

1≤jd≤kd

ζjd

∥
∥
∥

p1

`∞(K′)

= cp1

1 E max
1′≤i′≤k′

∣
∣
∣

∑

1′≤j′≤i′

(∑

1≤jd≤kd

%j′,jd

)∣
∣
∣

p1

= cp1

1 E max
1′≤i′≤k′

∣
∣
∣

∑

1′≤j′≤i′

ηj′

∣
∣
∣

p1

, (44)

with
ηj′ =

∑

1≤jd≤kd

%j′,jd
(1′ ≤ j′ ≤ k′). (45)

Since {ηj′ : 1′ ≤ j′ ≤ k′} are independent, mean zero random variables with
finite p1-st moment, the induction hypothesis implies

E max
1′≤i′≤k′

∣
∣
∣

∑

1′≤j′≤i′

ηj′

∣
∣
∣

p1

≤ c
(d−1)p1

1 E

∣
∣
∣

∑

1′≤j′≤k′

ηj′

∣
∣
∣

p1

. (46)

Inserting (45) and combining (43), (44), and (46), the desired result follows.

Now we consider the second term on the right-hand side of (36).

Lemma 4.4. Let d ∈ N, 1 ≤ p ≤ ∞, p̄ = min(p, 2), 1 ≤ p1 < ∞, p1 ≤ p. Then
there is a constant c(d) > 0 such that for all m,L ∈ N0, m ≥ 2, f ∈ Lp(Q)

(E ‖P
(d)
L S(d)f − A3

m,Lf‖
p1)1/p1 ≤ c(d)(L+ 1)d−1m−(1−1/p̄)L‖f‖Lp(Q).

Proof. We can assume p̄ ≤ p1, the remaining cases follow by Hölder’s inequality.
We have

(E ‖P (d)
L S(d)f − A3

m,Lf‖
p1)1/p1 ≤

∑

l̄∈Nd
0, |l̄|=L

(E ‖Ul̄S
(d)f − Vl̄f‖

p1)1/p1.

For the further analysis we introduce

Rl̄ : C(Q) → `∞(Il̄), Rl̄f = (f(xl̄,̄i))ī∈Il̄

and
Wl̄ : `∞(Il̄) → C(Q)

16

defined by

Wl̄ z =
∑

ī∈Il̄

zīψl̄,̄i

(
z = (zī)ī∈Il̄

∈ `∞(Il̄)
)
.

Using (33) and (34), we get

Ul̄ = Wl̄Rl̄, (47)

Vl̄f = Wl̄

(
∑

1̄≤j̄≤ī

|Ql̄,j̄|f(ξl̄,j̄)

)

ī∈Il̄

. (48)

We also note that
‖Wl̄‖ = ‖Ul̄‖ ≤ c(d), (49)

where the inequality is a consequence of (20) and (32). It follows from (47–49)
that

‖Ul̄S
(d)f − Vl̄f‖ =

∥
∥
∥Wl̄

(

(S(d)f)(xl̄,̄i) −
∑

1̄≤j̄≤ī

|Ql̄,j̄|f(ξl̄,j̄)
)

ī∈Il̄

∥
∥
∥

≤ c(d) max
ī∈Il̄

∣
∣
∣
∣
∣

∑

1̄≤j̄≤ī

(
∫

Ql̄,j̄

f(t)dt− |Ql̄,j̄|f(ξl̄,j̄)

)∣
∣
∣
∣
∣

= c(d) max
ī∈Il̄

∣
∣
∣

∑

1̄≤j̄≤ī

ηl̄,j̄

∣
∣
∣ (50)

with

ηl̄,j̄ =

∫

Ql̄,j̄

f(t)dt− |Ql̄,j̄|f(ξl̄,j̄).

The random variables {ηl̄,j̄ : j̄ ∈ Il̄} are independent, of mean zero, and satisfy

(E |ηl̄,j̄|
p1)1/p1 ≤ 2|Ql̄,j̄ |(E |f(ξl̄,j̄)|

p1)1/p1

= 2|Ql̄,j̄ |
1−1/p1

(∫

Ql̄,j̄

|f(t)|p1dt
)1/p1

. (51)

For p1 > 1 we get from Lemma 4.3.

(

E max
ī∈Il̄

∣
∣
∣

∑

1̄≤j̄≤ī

ηl̄,j̄

∣
∣
∣

p1
)1/p1

≤ c(d)
(

E

∣
∣
∣

∑

j̄∈Il̄

ηl̄,j̄

∣
∣
∣

p1
)1/p1

. (52)

Moreover, since p1 ≥ p̄, Lemma 3.2 gives

(

E

∣
∣
∣

∑

j̄∈Il̄

ηl̄,j̄

∣
∣
∣

p1
)1/p1

≤ c
(∑

j̄∈Il̄

(E |ηl̄,j̄|
p1)p̄/p1

)1/p̄

. (53)

17

From (52) and (53) we conclude for p1 > 1

(

E max
ī∈Il̄

∣
∣
∣

∑

1̄≤j̄≤ī

ηl̄,j̄

∣
∣
∣

p1
)1/p1

≤ c(d)
(∑

j̄∈Il̄

(E |ηl̄,j̄|
p1)p̄/p1

)1/p̄

. (54)

The same relation also holds for p1 = 1 (implying p̄ = 1, by our assumption
p̄ ≤ p1), which follows with c(d) = 1 from the triangle inequality. Using (51) and,
if p̄ < p1, Hölder’s inequality with exponent p1/p̄, we obtain

∑

j̄∈Il̄

(E |ηl̄,j̄|
p1)p̄/p1

≤ 2p̄ max
j̄∈Il̄

|Ql̄,j̄|
p̄−1

∑

j̄∈Il̄

|Ql̄,j̄ |
1− p̄

p1

(∫

Ql̄,j̄

|f(t)|p1dt
) p̄

p1

≤ 2p̄ max
j̄∈Il̄

|Ql̄,j̄|
p̄−1
(∑

j̄∈Il̄

|Ql̄,j̄ |
)1− p̄

p1

(∑

j̄∈Il̄

∫

Ql̄,j̄

|f(t)|p1dt
) p̄

p1

≤ 2p̄ max
j̄∈Il̄

|Ql̄,j̄|
p̄−1 ‖f‖p̄

Lp1(Q). (55)

Combining (50), (54), and (55), it follows that

(
E ‖Ul̄S

(d)f − Vl̄f‖
p1
)1/p1 ≤ c(d) max

j̄∈Il̄

|Ql̄,j̄|
1−1/p̄ ‖f‖Lp(Q). (56)

Taking into account that by (19), (28), and (29),

max
1≤i≤n̂l

(x̂l,i − x̂l,i−1) ≤ max
1≤i≤nl+1

(xl,i − xl,i−1) ≤ cm−l,

we get

|Ql̄,̄i| = (xld,id − xld,id−1)
d−1∏

k=1

(x̂lk,ik − x̂lk,ik−1) ≤ c(d)m−L (̄i ∈ Il̄, |l̄| = L).

Together with (31), (35), and (56) we obtain

(E ‖P
(d)
L S(d)f − A3

m,Lf‖
p1)1/p1 ≤ c(d)(L+ 1)d−1m−(1−1/p̄)L‖f‖Lp(Q),

which proves Lemma 4.4.

Theorem 4.5. Let d ∈ N, 1 ≤ p ≤ ∞, p̄ = min(p, 2), 1 ≤ p1 < ∞, p1 ≤ p.
Then there are constants c1−4(d) > 0 such that for all m ∈ N, m ≥ 2, L ∈ N0 the
algorithm A3

m,L uses not more than c1(d)(L + 1)d−1mL function values and the
error satisfies for each f ∈ Lp(Q)

(E ‖S(d)f − A3
m,Lf‖

p1)1/p1

≤ c2(d)(L+ 1)d−1
(
m−(1−1/p)(L−d+1) +m−(1−1/p̄)L

)
‖f‖Lp(Q). (57)

18

Moreover, for each n ∈ N with n ≥ 2 there is a choice of the parameters m and L
such that the algorithm uses not more than c3(d)n function values and the error
can be estimated for f ∈ Lp(Q) as

(E ‖S(d)f − A3
m,Lf‖

p1)1/p1

≤

{

c4(d)n
−1/2‖f‖Lp(Q) if 2 < p ≤ ∞

c4(d)(log n)(2−1/p)(d−1)n−1+1/p‖f‖Lp(Q) if 1 ≤ p ≤ 2.
(58)

Proof. Relation (57) follows readily from Lemmas 4.2 and 4.4. By (18), (28–29),
and (34–35), the number of function values used in A3

m,Lf is

∑

|l̄|=L

n̂l1 . . . n̂ld−1
nld ≤ c(d)(L+ 1)d−1mL. (59)

To show the second part we first assume 2 < p ≤ ∞. Then p̄ = 2 and we put

L =

⌈
2(p− 1)(d− 1)

p− 2

⌉

, m =
⌈

n
1
L

⌉

. (60)

With this choice we have n ≤ mL ≤ 2Ln and
(

1 −
1

p

)

(L− d+ 1)

≥
L

2
+

(
1

2
−

1

p

)
2(p− 1)(d− 1)

p− 2
−

(

1 −
1

p

)

(d− 1) =
L

2
,

which gives (58). Now let 1 ≤ p ≤ 2, hence p̄ = p. For n ≤ (log n)d−1, that
is, n ≤ c(d) for some constant c(d), the result follows trivially from (57) (with
suitably chosen c3(d), c4(d)). If n > (log n)d−1, then the (standard) choice

m = 2, L = dlog n− (d− 1) log log ne (61)

implies
n(log n)−(d−1) ≤ mL ≤ 2n(log n)−(d−1),

which yields (58).

Note that in (58) of Theorem 4.5 we obtain for p = 1 no convergence to zero as
n→ ∞. The lower bound in Proposition 5.1 shows that in this case no algorithm
at all has an error converging to zero.

Let us comment on the arithmetic work required for the computation of A3
m,Lf

as given in (34–35) (we always assume the real number model, see [21, 17] and,
for more details, [15]). Clearly, for the ξl̄,̄i (|l̄| = L, 1̄ ≤ ī ≤ n̄l̄) we need

d
∑

|l̄|=L

n̂l1 . . . n̂ld−1
nld

19

independent random variables uniformly distributed on [0, 1]. Taking into account
(59), this number is

≤ c(d)(L+ 1)d−1mL ≤ c(d)n

for each of the choices (60) and (61).
In order to compute the coefficients of the functions ψl̄,̄i in (34–35), for each

l̄ with |l̄| = L we have to carry out a task of the following type. Given k̄ =
(k1, . . . , kd) ∈ Nd and numbers (aī)1̄≤ī≤k̄, compute (bī)1̄≤ī≤k̄, where

bī =
∑

1̄≤j̄≤ī

aj̄.

We show how this can be done with at most c0(d)k1 . . . kd arithmetic operations.
For d = 1 with c0(1) = 1 this is obvious. Now we use recursion. So let d > 1
and assume we have a suitable procedure for d− 1. Let us write k̄ = (k′, kd), and
ī = (i′, id). We compute for each jd ∈ {1, 2, . . . , kd}

vi′,jd
=

∑

1′≤j′≤i′

aj′,jd
(1′ ≤ i′ ≤ k′)

by the procedure for dimension d − 1 (thus, we compute the sums in the jd-th
’layer’). Then for each 1′ ≤ i′ ≤ k′ we determine

bi′,id =
∑

1≤jd≤id

vi′,jd
(1 ≤ id ≤ kd).

Clearly, this needs a total of

kd · c0(d− 1)k1 . . . kd−1 + k1 . . . kd−1 · kd = c0(d)k1 . . . kd

operations, and we get c0(d) = c0(d− 1) + 1, hence c0(d) = d. Using again (59),
the work of computing all coefficients in (34–35) is

d
∑

|l̄|=L

n̂l1 . . . n̂ld−1
nld ≤ c(d)(L+ 1)d−1mL ≤ c(d)n.

Finally we consider the cost of computing the value
(
A3

m,Lf
)
(x) for a given

x ∈ Q, once the coefficients in (34–35) have been determined. For this purpose
we assume that the functions ψm,l,i (i = 1, . . . , nm,l), see (17), have the following
properties: There are constants c1−3 > 0 such that for all m, l ∈ N0, m ≥ 2,

sup
t∈[0,1]

|{i : ψm,l,i(t) 6= 0}| ≤ c1, (62)

furthermore, given m, l, t, the cost of identifying those i ∈ {1, . . . , nm,l} with
ψm,l,i(t) 6= 0 is ≤ c2 and the cost of computing ψm,l,i(t) for any such i is ≤ c3.
These properties hold, in particular, for piecewise linear interpolation as described

20

after (18–21) (here we assume that our model of computation allows to take the
integer part at cost ≤ c, which is needed to identify the indices i).

The assumptions imply that the corresponding statements also hold for the
ψ̂m,l,i (i = 1, . . . , n̂m,l) and therefore also for the ψl̄,̄i (̄i ∈ Il̄). Hence, the number
of non-zero terms ψl̄,̄i(x) in (34–35) is

∣
∣
{
(l̄, ī) : |l̄| = L, ī ∈ Il̄, ψl̄,̄i(x) 6= 0

}∣
∣ ≤ c(d)Ld−1.

Moreover, the cost of identifying and computing them is ≤ c(d)Ld−1, as well.
Thus, the cost of computing the value

(
A3

m,Lf
)
(x) is ≤ c(d)(L+ 1)d−1, therefore

≤ c(d) for the choice (60) in the case 2 < p ≤ ∞ and ≤ c(d)(log n)d−1 for the
choice (61) in the case 1 ≤ p ≤ 2.

5 Lower bounds and complexity

For basic notions concerning the randomized setting of information-based com-
plexity – the framework we use – we refer to [14, 21, 4]. Here we consider the
class of all randomized adaptive algorithms of varying cardinality. We refer to
[5, 6] for this approach, the particular notation applied here, and more details.

First we introduce the respective deterministic class. An element

A ∈ Adet(F(Q), Y)

is a tuple
A = ((Li)

∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0)

such that
L1 ∈ Q, τ0 ∈ {0, 1}, ϕ0 ∈ Y,

and
Li : Ki−1 → Q (i = 2, 3, . . .)

τi : Ki → {0, 1} (i = 1, 2, . . .)

ϕi : Ki → Y (i = 1, 2, . . .)

are arbitrary mappings. Given f ∈ F(Q), we associate with it a sequence (ti)
∞
i=1

with ti ∈ Q, defined as follows:

t1 = L1 (63)

ti = Li(f(t1), . . . , f(ti−1)) (i ≥ 2). (64)

Define card(A, f), the cardinality of A at input f , to be 0 if τ0 = 1. If τ0 = 0, let
card(A, f) be the first integer n ≥ 1 with

τn(f(t1), . . . , f(tn)) = 1,

21

if there is such an n. If τ0 = 0 and no such n ∈ N exists, put card(A, f) = +∞.
For f ∈ F(Q) with card(A, f) < ∞ we define the output Af of algorithm A at
input f as

Af =

{
ϕ0 if n = 0
ϕn(f(t1), . . . , f(tn)) if n ≥ 1.

Given n ∈ N0 and F ⊆ F(Q), we define Adet
n (F, Y) as the set of those A ∈

Adet(F(Q), Y) for which
max
f∈F

card(A, f) ≤ n.

Given a mapping S : F → Y , the error of A ∈ Adet
n (F, Y) in approximating S is

defined as
e(S,A, F, Y) = sup

f∈F
‖Sf − Af‖Y .

The deterministic n-th minimal error of S is defined for n ∈ N0 as

edet
n (S, F, Y) = inf

A∈Adet
n (F,Y)

e(S,A, F, Y). (65)

It follows that no deterministic algorithm that uses at most n function values can
have a smaller error than edet

n (S, F, Y).
Next we introduce the class of randomized adaptive algorithms of varying

cardinality. We do this for the case that F consists of equivalence classes of
functions, as needed for this paper, following the approach of [7]. The case of F
being a set of functions can be found in [5, 6]. Let 1 ≤ p ≤ ∞ and let F ⊆ Lp(Q).
An element

A ∈ Aran
n (F, Y)

is a tuple
A = ((Ω,Σ,P), (Aω)ω∈Ω),

where (Ω,Σ,P) is a probability space,

Aω ∈ Adet(F(Q), Y) (ω ∈ Ω), (66)

and the following two properties are satisfied.

1. For each f ∈ F and each representative f0 of f the mapping

ω ∈ Ω → card(Aω, f0)

is Σ-measurable and satisfies

E card(Aω, f0) ≤ n.

Moreover, the mapping

ω ∈ Ω → Aωf0 ∈ Y

is Σ-to-Borel measurable and essentially separably valued, i.e., there is a
separable subspace Y0 ⊆ Y such that

Aωf ∈ Y0 for P-almost all ω ∈ Ω.

22

2. If f0 and f1 are representatives of the same class f ∈ F , then P-almost
surely

card(Aω, f0) = card(Aω, f1),

Aωf0 = Aωf1.

Consequently, we can define the output Af of algorithm A at input f ∈ F ⊆
Lp(Q) as the Y -valued random variable Aωf0 on (Ω,Σ,P), where f0 is any repre-
sentative of f . By the above, another choice of f0 leads – up to equivalence – to
the same random variable.

It is readily seen that

A2
n,l ∈ Aran

n (BLp(Q), C(Q))

and
A3

m,L ∈ Aran
n (BLp(Q), C(Q)) for n ≥ c1(d)(L+ 1)d−1mL (67)

(see Theorem 4.5 for the estimate of the number of samples in (67)). Here we
use the completeness of the measure P stated at the beginning of Section 3 and
asssumed throughout the paper. Algorithm A1

n is of the required form (with
Y = B0(Q)), satisfies property 2, but not 1. The latter is discussed in Section
6.3.

Given a mapping S : F → Y , the error of A ∈ Aran
n (F(Q), Y) as an approxi-

mation of S on F is defined as

e(S,A, F, Y) = sup
f∈F

E ‖Sf − Aωf‖Y . (68)

The randomized n-th minimal error of S is defined for n ∈ N0 as

eran
n (S, F, Y) = inf

A∈Aran
n (F,Y)

e(S,A, F, Y). (69)

Consequently, no randomized linear algorithm that uses (on the average) at most
n function values has an error smaller than eran

n (S, F, Y). Note that the definition
(68) involves the first moment. This way lower bounds have the strongest form,
because respective bounds for higher moments follow by Hölder’s inequality. In
Sections 3 and 4 upper bounds for concrete algorithms were stated in a form
which included possible estimates of higher moments.

Define for ε > 0 the information complexity as the inverse function of the
n-th minimal error

nran
ε (S, F, Y) = min{n ∈ N0 : eran

n (S, F, Y) ≤ ε}, (70)

if there is such an n, and
nran

ε (S, F, Y) = +∞, (71)

23

if there is no such n. Thus, if nran
ε (S, F, Y) < ∞, it follows that any algorithm

with error ≤ ε needs at least nran
ε (S, F, Y) samples, while (71) means that no

algorithm at all has error ≤ ε.
Now let ν be a probability measure on F(Q) whose support, denoted by

supp ν, is a finite set and satisfies supp ν ⊆ F (meaning, more precisely, that
each function from supp ν belongs to a class from F). For A ∈ Adet(F(Q), Y)
put

card(A, ν) =

∫

F(Q)

card(A, f) dν(f),

e(S,A, ν, Y) =

∫

F(Q)

‖Sf − Af‖Y dν(f)

and define the average n-th minimal error as

eavg
n (S, ν, Y) = inf{e(S,A, ν, Y) : A ∈ Adet(F(Q), Y), card(A, ν) ≤ n}.

Then the following holds

eran
n (S, F, Y) ≥

1

2
eavg
2n (S, ν, Y). (72)

This follows from the usual relation between randomized and average case setting,
going back to Bakhvalov, see [14, 4, 17].

We also consider two smaller classes of algorithms. The first one is the class
of non-adaptive algorithms Adet,1

n (F(Q), Y). We define A ∈ Adet,1
n (F(Q), Y) if

A ∈ Adet(F(Q), Y) and the respective functions Li and τi are constant and satisfy

τ0 = τ1 = · · · = τn−1 = 0, τn = 1.

Thus, an element A of Adet,1
n (F(Q), Y) generates a mapping from F (Q) to Y of

the form

Af =

{
ϕ0 if n = 0
ϕn(f(t1), . . . , f(tn)) if n ≥ 1

(f ∈ F(Q))

with ϕ0 ∈ Y , ti ∈ Q (i = 1, . . . , n), not depending on f , and ϕn : Kn → Y an
arbitrary mapping.

The second class Adet,2
n (F(Q), Y) is the class of linear algorithms, that is,

the set of all A ∈ Adet,1
n (F(Q), Y) with ϕn linear. In other words, an element

A ∈ Adet,2
n (F(Q), Y) has the form

Af =

0 if n = 0
n∑

i=1

f(ti)ψi if n ≥ 1
(f ∈ F(Q))

with ti ∈ Q and ψi ∈ Y for 1 ≤ i ≤ n.

24

For j = 1, 2 we define Aran,j
n (F, Y) as the set of all A ∈ Aran

n (F, Y) with

Aω ∈ Adet,j
n (F(Q), Y) (ω ∈ Ω).

We note that the algorithms constructed in Sections 3 and 4 are linear in the
sense that

A2
n,l ∈ Aran,2

n (BLp(Q), C(Q)) (n ∈ N),

A3
m,L ∈ Aran,2

n (BLp(Q), C(Q)) (n ≥ c1(d)(L+ 1)d−1mL),

and the operators A1
n,ω constituting algorithm A1

n, see (4), are linear, as well.
By analogy to the above, we define for j = 1, 2 the respective n-th minimal

errors edet,j
n (S, F, Y), eran,j

n (S, F, Y), the information complexities nran
ε (S, F, Y),

and the average n-th minimal errors eavg,j
n (S, ν, Y). The quantities edet,2

n (S, F, Y)
were also called linear sampling numbers in [16], the edet,1

n (S, F, Y) nonlinear
sampling numbers. Thus, the eran,j

n (S, F, Y) (j = 1, 2) could be viewed as the
respective randomized counterparts.

In these cases slightly sharper lower bounds through the average case can be
given:

eran,j
n (S, F, Y) ≥ eavg,j

n (S, ν, Y) (j = 1, 2). (73)

We prove three lower bounds for the randomized n-th minimal error. The first
one is standard and contains the sharp order in n. It has a constant independent
of d, but it does not match the positive power of d in the upper estimate.

Proposition 5.1. Let 1 ≤ p ≤ ∞ and p̄ = min(p, 2). Then there is a constant
c > 0 such that for all d, n ∈ N

eran
n (S(d),BLp([0,1]d), C([0, 1]d)) ≥ cn−1+1/p̄.

Proof. We write t = (t1, t
′) ∈ [0, 1]d with t1 ∈ [0, 1] and t′ ∈ [0, 1]d−1. Let

0 < δ < 1 and let
Rδ : F([0, 1]) → F([0, 1]d)

be defined by

(Rδf)(t1, t
′) =

{
f((1 − δ)−1t1) if 0 ≤ t1 ≤ 1 − δ
0 otherwise,

.

If f0, f1 ∈ F([0, 1]) coincide except for a set of Lebesgue measure zero, the same
is true for Rδf0, Rδf1 ∈ F([0, 1]d). Moreover,

‖Rδ : Lp([0, 1]) → Lp([0, 1]d)‖ = (1 − δ)1/p ≤ 1. (74)

Define

Ψδ : C([0, 1]d) → K, Ψδ g = δ−d

∫

[1−δ,1]d
g(x)dx.

25

Then
‖Ψδ : C([0, 1]d) → K‖ = 1. (75)

Finally, let

S1 : Lp([0, 1]) → K, S1f =

∫ 1

0

f(t)dt

be the integration operator. Then for x = (x1, . . . , xd) with 1 − δ ≤ x1 ≤ 1 and
f ∈ Lp([0, 1])

(
S(d)Rδf

)
(x) = x2 . . . xd(1 − δ)

∫ 1

0

f(t)dt,

and hence,

ΨδS
(d)Rδf = δ−d

(

δ −
δ2

2

)d−1

δ(1 − δ)S1f = γ(d, δ)S1f, (76)

with

γ(d, δ) =

(

1 −
δ

2

)d−1

(1 − δ) .

Now let
A = ((Ω,Σ,P), (Aω)ω∈Ω) ∈ Aran

n (BLp([0,1]d), C([0, 1]d)).

By Lemma 2 of [6], for each ω ∈ Ω there is an A1,ω ∈ Adet(F([0, 1]),K) such that
for all f ∈ F([0, 1])

card(A1,ω, f) = card(Aω, Rδf)

and, if card(A1,ω, f) <∞,

A1,ωf = γ(d, δ)−1ΨδAωRδf.

It follows that

A1 = ((Ω,Σ,P), (A1,ω)ω∈Ω) ∈ Aran
n (BLp([0,1]),K).

Moreover, because of (74–76),

e(S1, A1,BLp([0,1]),K) = sup
f∈BLp([0,1])

E |S1f − A1,ωf |

= γ(d, δ)−1 sup
f∈BLp([0,1])

E |ΨδS
(d)Rδf − ΨδAωRδf |

≤ γ(d, δ)−1 sup
g∈B

Lp([0,1]d)

E ‖S(d)g − Aωg‖

= γ(d, δ)−1e(S(d), A,BLp([0,1]d), C([0, 1]d)).

Consequently

γ(d, δ) eran
n (S1,BLp([0,1]),K) ≤ eran

n (S(d),BLp([0,1]d), C([0, 1]d)).

26

Finally, the lower bound for integration is well-known, see [14, 4],

eran
n (S1,BLp([0,1]),K) ≥ c1n

−1+1/p̄.

With γ(d, δ) → 1 for d fixed and δ → 0 the result follows.

The second lower bound is not sharp in n, but gives more information about
the dependence on d. See also [9], the proof of Theorem 8, for a similar approach
in the deterministic case.

Proposition 5.2. Let 1 ≤ p ≤ ∞. Then there is a constant c > 0 such that for
all d, n ∈ N

eran
n (S(d),BLp(Q), C(Q)) ≥ c 2−4n/d.

Proof. Since BL∞(Q) ⊂ BLp(Q), it suffices to consider the case p = ∞. We use the
following fact (see, e.g., [10], proof of Theorem 2): There is a constant 0 < c0 ≤ 1
such that for each d ∈ N and each 0 < ε ≤ 1 there is a set U ⊂ [0, 1]d with

|U | ≥
(c0
ε

)d

, (77)

|[0, u] ÷ [0, v]| ≥ ε (u, v ∈ U , u 6= v), (78)

where ÷ denotes the symmetric difference. Let u, v ∈ U , u 6= v. Then (78) gives

‖S(d)χ[0,u] − S(d)χ[0,v]‖C(Q)

≥ max
x∈{u,v}

∣
∣
∣
∣

∫

[0,x]

(
χ[0,u](t) − χ[0,v](t)

)
dt

∣
∣
∣
∣

= max
(∣
∣[0, u] \ [0, v]

∣
∣,
∣
∣[0, v] \ [0, u]

∣
∣

)

≥ ε/2. (79)

Let ν be the uniform distribution on the set

{χ[0,u] : u ∈ U } ⊂ F(Q). (80)

Given n ∈ N, we put
ε = c0 2−(4n+4)/d. (81)

Now we estimate eavg
2n (S(d), ν, C(Q)) from below. So let A ∈ Adet(F(Q), C(Q)),

with

card(A, ν) =

∫

F(Q)

card(A, f) dν(f) ≤ 2n. (82)

Let
U0 = {u ∈ U : card(A,χ[0,u]) ≤ 4n}.

It follows from (82) that

|U0| ≥
1

2
|U | ≥

1

2

(c0
ε

)d

. (83)

27

For u ∈ U0 let (tu,i)i∈N be the respective sequence associated with A and χ[0,u]

according to (63–64), and let nu = card(A,χ[0,u]). Define

T =
{
(χ[0,u](tu,i))

nu

i=1 : u ∈ U0

}
⊆
⋃

k≤4n

{0, 1}k. (84)

This implies
|{Aχ[0,u] : u ∈ U0}| ≤ |T | (85)

and
|T | < 24n+1. (86)

From (79) and (85) we get

|{u ∈ U0 : ‖S(d)χ[0,u] − Aχ[0,u]‖ < ε/4}| ≤ |T |,

and therefore

eavg
2n (S(d), ν, C(Q)) ≥

|U0| − |T |

4|U |
ε. (87)

Using (81) and (83), we obtain

|U0| ≥
1

2

(c0
ε

)d

= 24n+3, (88)

and with (83) and (86) it follows that

|U0| − |T |

|U |
≥

|U0| − |T |

2|U0|
≥

1

2
.

Now (87) and (81) imply

eavg
2n (S(d), ν, C(Q)) ≥

ε

8
≥ c 2−4n/d.

Since supp ν ⊆ BL∞(Q), we apply (72), concluding the proof.

Combining Theorem 3.4 and Propositions 5.1 and 5.2, we obtain

Theorem 5.3. Let 1 ≤ p ≤ ∞ and p̄ = min(p, 2). Then there exist constants
c1−6 > 0 such that for all d, n ∈ N, 0 < ε ≤ c1,

c2 max(n−1+1/p̄, 2−4n/d) ≤ eran
n (S(d),BLp(Q), C(Q)) ≤ c3d

1−1/p̄n−1+1/p̄,

moreover, for p > 1,

max

(
c4

εp̄/(p̄−1)
,
d

4
log
(c5
ε

))

≤ nran
ε (S(d),BLp(Q), C(Q)) ≤

c6d

εp̄/(p̄−1)
, (89)

and finally, for p = 1,

nran
ε (S(d),BL1(Q), C(Q)) = ∞.

28

As a consequence, we get the sharp order of the minimal error in n for d fixed.

Corollary 5.4. Let 1 ≤ p ≤ ∞, p̄ = min(p, 2), and d ∈ N. There are constants
c1(d), c2(d) > 0 such that for all n ∈ N,

c1(d)n
−1+1/p̄ ≤ eran

n (S(d),BLp(Q), C(Q)) ≤ c2(d)n
−1+1/p̄.

So the algorithms constructed in Sections 3 and 4 are of optimal order (up to
logarithmic factors for the Smolyak-Monte Carlo algorithm in the case 1 ≤ p ≤ 2).
Furthermore, we obtain for any fixed 0 < ε ≤ c1 the order of the information
complexity (see relations (70) and (71)) as a function of d — it is linear in d for
all p > 1.

Corollary 5.5. Let 1 < p ≤ ∞. Then there is a constant c1 > 0 with the
following property. For each 0 < ε ≤ c1 there exist constants c2(ε), c3(ε) > 0 such
that for all d ∈ N

c2(ε)d ≤ nran
ε (S(d),BLp(Q), C(Q)) ≤ c3(ε)d.

Finally, as observed by an anonymous referee, the lower bound of (89) implies
that the upper bound of the same relation is sharp among all estimates of the
form

nran
ε (S(d),BLp(Q), C(Q)) ≤

c1d
σ1

εσ2
for all d ∈ N, 0 < ε ≤ c2, (90)

in the sense that if c1, c2 > 0 and σ1, σ2 ∈ R are such that (90) holds, then

σ1 ≥ 1, σ2 ≥ p̄/(p̄− 1). (91)

This remark, as well as Corollaries 5.4 and 5.5, remain true with eran
n replaced

by eran,j
n and nran

ε by nran,j
ε (j = 1, 2), respectively, since the upper bounds were

obtained by the help of a linear algorithm (Theorem 3.4).
For the class of nonadaptive algorithms the lower bounds of Proposition 5.2

and Theorem 5.3 can be strengthened as follows.

Proposition 5.6. Let 1 ≤ p ≤ ∞. Then there is a constant c > 0 such that for
all d, n ∈ N

eran,1
n (S(d),BLp(Q), C(Q)) ≥ c min(d/n, 1).

Proof. We argue in a way similar to the proof of Proposition 5.2. We use again
the set U , see relations (77) and (78), and the distribution ν, see (80). Given
n ∈ N, we put here

ε =
c0
2e

min

(
d

n
, 1

)

. (92)

We estimate eavg,1
n (S(d), ν, C(Q)) from below. Let A ∈ Adet,1

n (F(Q), C(Q)),

Af = ϕn(f(t1), . . . , f(tn)) (f ∈ F(Q)),

29

and put
T =

{
(χ[0,u](ti))

n
i=1 : u ∈ U

}
⊆ {0, 1}n. (93)

It follows that
|{Aχ[0,u] : u ∈ U }| ≤ |T |. (94)

Now we use an argument due to Hinrichs ([10], proof of Theorem 4). Since the
Vapnik-Červonenkis dimension of the family {[0, u] : u ∈ U } is ≤ d (referring
again to [3], Cor. 9.2.15), we conclude from the shatter function lemma that

|T | ≤
(

emax
(n

d
, 1
))d

(95)

(see, e.g., [13], Lemma 5.9 and inequality (4.7), for the case n ≥ d, the case n < d
is trivial). From (94) and (79) we get

|{u ∈ U : ‖S(d)χ[0,u] − Aχ[0,u]‖ < ε/4}| ≤ |T |,

hence

eavg,1
n (S(d), ν, C(Q)) ≥

|U | − |T |

4|U |
ε. (96)

On the other hand, by (77) and (92),

|U | ≥
(c0
ε

)d

=
(

2emax
(n

d
, 1
))d

. (97)

Together with (95) we obtain

|U | − |T |

|U |
≥ 1 − 2−d, (98)

consequently, from (96) and (92),

eavg,1
n (S(d), ν, C(Q)) ≥

ε

8
=

c0
16e

min

(
d

n
, 1

)

,

and the desired result follows from (73).

As a consequence of Theorem 3.4 and Proposition 5.6 we get

Theorem 5.7. Let 1 ≤ p ≤ ∞ and p̄ = min(p, 2). Then there exist constants
c1−5 > 0 such that for all d, n ∈ N, 0 < ε ≤ c1, j = 1, 2,

c2 max(n−1+1/p̄,min(d/n, 1)) ≤ eran,j
n (S(d),BLp(Q), C(Q)) ≤ c3d

1−1/p̄n−1+1/p̄,

furthermore, for p > 1,

c4 max(1/εp̄/(p̄−1), d/ε) ≤ nran,j
ε (S(d),BLp(Q), C(Q)) ≤ c5d/ε

p̄/(p̄−1).

and for p = 1,
nran,j

ε (S(d),BL1(Q), C(Q)) = ∞.

30

We do not know if Proposition 5.6 holds for eran
n (S(d),BLp(Q), C(Q)). Its proof

does not generalize directly to adaptive algorithms. An obvious obstacle is that
we cannot apply the shatter function lemma since the point set (ti)

n
i=1 may vary

with the input χ[0,u]. But more than that, one can show that, in a certain sense,
this proof cannot work for adaptive algorithms. Namely, observe that the proof
operates on the smaller class

F1 = {χ[0,u] : u ∈ [0, 1]d}

and yields the estimate

eran,1
n (S(d), F1, C(Q)) ≥ c min(d/n, 1).

However, this estimate does not hold for eran
n (S(d), F1, C(Q)). Indeed, for the

class F1 adaptive algorithms can have a much better, an exponential rate, as the
following result shows.

Proposition 5.8. For all d, n ∈ N,

eran
n (S(d), F1, C(Q)) ≤ d 2−bn/dc−1. (99)

Proof. Use bisection to determine an approximation v = (v1, . . . , vd) to the input
u = (u1, . . . , un) with n queries (in other words, with n function values χ[0,u](ti)
with adaptively chosen ti) and precision

max
1≤i≤d

|ui − vi| ≤ 2−bn/dc−1.

Then approximate
S(d)χ[0,u] ≈ S(d)χ[0,v],

where for x = (x1, . . . , xn) ∈ [0, 1]d

(
S(d)χ[0,v]

)
(x) =

∫

[0,x]

χ[0,v](t)dt =
d∏

i=1

min(xi, vi).

Arguing similarly to (16), this leads to (99) (in fact, this is a deterministic ap-
proximation).

Note that the results of this section remain true for the case that S (d) is
considered as an operator into L∞([0, 1]d).

For p > 1 the sharp order of

eran
n (S(d),BLp(Q), C(Q)) and eran,j

n (S(d),BLp(Q), C(Q)) (j = 1, 2)

as a function of n and d simultaneously is an open problem.

31

6 Supplements, extensions, comments

6.1 Deterministic setting

We want to compare our results to the deterministic setting, which was defined in
Section 5. The deterministic setting is not well-defined for F = BLp(Q), since the
elements are classes of functions for which function values are not well-defined.
Alternatively, we might consider the dense subset F = BLp(Q) ∩ C(Q) . Then
function valued are defined. However, we have the following essentially well-
known result.

Proposition 6.1. For all n ∈ N

edet
n (S(d),BLp(Q) ∩ C(Q), C(Q)) = 1.

Proof. The case p < ∞ of Proposition 6.1 follows from the case p = ∞, which
says that

edet
n (S(d),BC(Q), C(Q)) = 1.

Using the same argument as in the proof of Proposition 5.1, this is readily reduced
to

edet
n (S1,BC([0,1]),K) = 1,

which is well-known and easily checked.

Thus, we see that deterministic algorithms can have no convergence rate at
all for the problem S(d) : BLp(Q) ∩ C(Q) → C(Q).

6.2 Efficient function evaluation for simple sampling

It is interesting to consider the task that once the representation (3), (7), or
(34–35) of the output of the respective algorithm has been obtained, we want to
compute many function values of it. The case of (34–35) was discussed at the
end of Section 4. Here we restrict the consideration to (3). It was mentioned
in the discussion after (7) that a direct appoach leads to a cost of cdn for each
value. In this case it might make sense to spend some extra effort in advance to
make the subsequent computations more efficient. This is the topic of the present
subsection.

We have the following task: given n ∈ N and any

zi ∈ [0, 1]d, βi ∈ K (i = 1, . . . , n), (100)

compute

s(x) =
n∑

i=1

βiχ[zi,1̄](x) (101)

32

for a given x ∈ [0, 1]d (or a number of such x). We assume that n = 2L for some
L ∈ N0. (If this is not the case we put L = dlog ne and add points zi = 0 and
numbers βi = 0 for i = n+ 1, . . . , 2L.)

We need some notation. Let DL be the set of all integer intervals of the form

I = {k2l + 1, k2l + 2, . . . , (k + 1)2l} (102)

contained in {1, . . . , 2L}, i.e., all intervals (102) with 0 ≤ l ≤ L and 0 ≤ k < 2L−l.
In a first step we provide the needed arrays of auxiliary numbers, that is, we
compute a series of numbers which depend on the zi and βi, which are then used
for the subsequent computation of the value s(x). Let us call this structure a
d-dimensional sampling array of size n. It is defined recursively.

A one-dimensional sampling array of size n is a pair of n-vectors

a = ((ui)
n
i=1, (γi)

n
i=1) (103)

with γi ∈ K (i = 1, . . . , n) and

0 ≤ u1 ≤ . . . ≤ un ≤ 1. (104)

For d > 1 a d-dimensional sampling array of size n is a tuple

a = ((ui)
n
i=1, (aI)I∈DL

) (105)

where (ui)
n
i=1 satisfies (104) and the aI are (d − 1)-dimensional sampling arrays

of size |I|. Let S (d, n) denote the set of all d-dimensional sampling arrays of size
n.

Let Pn denote the set of all permutations of (1, 2, . . . , n) and let

ΠL : [0, 1]n → Pn

be such that for all (ui)
n
i=1 ∈ [0, 1]n the following holds: if ΠL(u1, . . . , un) = π,

then
uπ(i) ≤ uπ(j) (1 ≤ i < j ≤ n)

(i.e., π induces a non-decreasing reordering of the (ui)
n
i=1).

Now we define recursively

Λd(z1, . . . , zn, β1, . . . , βn) ∈ S (d, n),

for all (zi)
n
i=1, (βi)

n
i=1 satisfying (100). We let

π = ΠL(z1,1, . . . , zn,1).

For d = 1 define

Λ1(z1, . . . , zn, β1, . . . , βn) = ((zπ(i))
n
i=1, (γi)

n
i=1), (106)

33

where

γi =
i∑

k=1

βπ(k) (i = 1, . . . , n).

For d > 1, we write zi = (zi,1, z
′
i) with zi,1 ∈ [0, 1] and z′i ∈ [0, 1]d−1. Then we

define
Λd(z1, . . . , zn, β1, . . . , βn) =

(
(zπ(i),1)

n
i=1, (aI)I∈DL

)
(107)

with
aI = Λd−1

(
(z′π(i))i∈I , (βπ(i))i∈I

)
. (108)

Given x = (x1, x
′) ∈ [0, 1] × [0, 1]d−1 and a d-dimensional sampling array

a ∈ S (d, n), we define the function

Ψd(x, a) ∈ K

as follows. Let a have the form (103) if d = 1 and the form (105) if d > 1. In
both cases we determine the largest j ≤ n with uj ≤ x1. If there is no such j, we
set

Ψd(x, a) = 0. (109)

Otherwise we put for d = 1
Ψ1(x, a) = γj. (110)

If d > 1, let

{1, 2, . . . , j} =
m⋃

l=1

Il (111)

be the unique representation with 1 ≤ m ≤ L, Il ∈ DL (l = 1, . . . ,m) and

Il1 ∩ Il2 = ∅, |Il1 | > |Il2 | (l1 < l2). (112)

Then we set

Ψd(x, a) =
m∑

l=1

Ψd−1(x
′, aIl

). (113)

Our first claim is the following

Lemma 6.2. For all d ∈ N, L ∈ N0, n = 2L, x ∈ [0, 1]d, z1, . . . , zn ∈ [0, 1]d,
β1, . . . , βn ∈ K the following holds

s(x) = Ψd(x,Λd(z1, . . . , zn, β1, . . . , βn)). (114)

Proof. We argue by induction over d. First let d = 1. If

{i : zi ≤ x} = ∅,

then

s(x) =
n∑

i=1

βiχ[zi,1](x) = 0 = Ψ1(x,Λ1(z1, . . . , zn, β1, . . . , βn))

34

by (109). Otherwise, with

j = max{i : zπ(i) ≤ x},

we have

s(x) =
n∑

i=1

βiχ[zi,1](x) =
n∑

i=1

βπ(i)χ[zπ(i),1](x)

=

j
∑

i=1

βπ(i) = γj = Ψ1(x,Λ1(z1, . . . , zn, β1, . . . , βn)).

Now let d > 1 and assume the statement holds for d− 1. Again, we first consider
the case

{i : zi,1 ≤ x1} = ∅. (115)

Here we have

s(x) =
n∑

i=1

βiχ[zi,1̄](x) =
n∑

i=1

βiχ[zi,1,1](x1)χ[z′i,1
′](x

′)

= 0 = Ψd(x,Λd(z1, . . . , zn, β1, . . . , βn)),

by (109). If (115) does not hold, we set

j = max{i : zπ(i),1 ≤ x1}

and conclude

s(x) =
n∑

i=1

βiχ[zi,1̄](x) =
n∑

i=1

βπ(i)χ[zπ(i),1̄](x)

=
n∑

i=1

βπ(i)χ[zπ(i),1,1](x1)χ[z′
π(i)

,1′](x
′)

=

j
∑

i=1

βπ(i)χ[z′
π(i)

,1′](x
′) =

m∑

l=1

∑

i∈Il

βπ(i)χ[z′
π(i)

,1′](x
′)

=
m∑

l=1

Ψd−1(x
′,Λd−1

(
(z′π(i))i∈Il

, (βπ(i))i∈Il

)

= Ψd(x,Λd(z1, . . . , zn, β1, . . . , βn)),

by the induction hypothesis, (107), (108), and (113).

Now we have a look at the number of arithmetic operations needed for the
computation of s(x) according to formula (114). Recall that we assume the real
number model [15].

35

Lemma 6.3. There is a choice of (ΠL)L∈N0 such that the following holds: For
all d ∈ N there is a constant c(d) > 0 such that for all L ∈ N0, n = 2L,
z1, . . . , zn ∈ [0, 1]d, β1, . . . , βn ∈ K the d-dimensional sampling array

Λd(z1, . . . , zn, β1, . . . , βn),

as defined in (106), (107), and (108), can be computed in

≤ c(d)n(log n)max(d−1,1)

operations.

Proof. Let ΠL(u1, . . . , un) be the output supplied by merge sorting, which can be
obtained in ≤ cn log n operations (see [1], Ch. 2.7). For d = 1 we need a total
of ≤ c1n log n operations for sorting the zi and computing the sums. If d = 2,
we first sort zi,1 in ≤ cn log n, which gives π. Then for each I ∈ DL we have to
sort z′π(i) = zπ(i),2 for i ∈ I. These results are obtained simultaneously for all I as

a by-product of merge sorting (zπ(i),2)
n
i=1, which requires ≤ cn log n operations.

The remaining computations of the sums require

≤ c
∑

I∈DL

|I| ≤ cn log n

operations.
For d > 2 we argue by induction. So assume the statement holds for d − 1.

To compute
Λd(z1, . . . , zn, β1, . . . , βn)

according to (107) and (108), we need cn log n operations for sorting the first
component. By the induction assumption, the computation of the aI requires
not more than

c(d− 1)
∑

I∈DL

|I|(log |I|)d−2 ≤ c(d− 1)2L

L∑

l=0

(L− l)d−2

≤ c(d)2LLd−1 ≤ c(d)n(log n)d−1.

Lemma 6.4. Let d ∈ N. Then there is a constant c(d) > 0 such that for all
L ∈ N0, n = 2L, a ∈ S (d, n), x ∈ [0, 1]d the function Ψd(x, a) given by (109),
(110), and (113), can be computed in ≤ c(d)(log n+ 1)d operations.

Proof. For d = 1 we apply the bisection algorithm to determine j (or its non-
existence) in ≤ c(log n+1) operations. For d > 1 we argue by induction. Assume
the statement is true for d− 1. Again, we determine j by bisection. The binary
representation of j yields m ≤ L and the sets (Il)

m
l=1 so that (111) and (112)

36

hold. By the induction assumption, the cost of computing Ψd−1(x
′, aIl

) is ≤
c(d− 1)(log |Il| + 1)d−1, so the total cost is

≤ c(log n+ 1) + c(d− 1)
m∑

l=1

(log |Il| + 1)d−1

≤ c(log n+ 1) + c(d− 1)
L∑

l=1

(l + 1)d−1

≤ c(d)(log n+ 1)d.

Corollary 6.5. Let d ∈ N. Then there are constants c1(d), c2(d) > 0 such that
for all n ∈ N, n ≥ 2, z1, . . . , zn ∈ [0, 1]d, β1, . . . , βn ∈ K, N ∈ N, xi ∈ [0, 1]d

(i = 1, . . . , N) the values

s(xi) =
n∑

i=1

βiχ[zi,1̄](xi) (i = 1, . . . , N)

can be computed in

≤ c1(d)n(log n)max(d−1,1) + c2(d)(log n)dN

operations.

Let us summarize the total cost – including the computation of N values of
the output function – needed for algorithm A1

n to reach an error ε > 0. Combining
Lemmas 6.2–6.4 with Theorem 3.4 we obtain the following

Corollary 6.6. Let d ∈ N, 1 < p ≤ ∞, 1 ≤ p1 < ∞, p1 ≤ p, and p̄ =
min(p, 2). Then there are constants c1, c2 > 0 not depending on d and constants
c3(d), c4(d) > 0 such that for each 0 < ε ≤ 1/2 there exists an n ∈ N with the
following properties. The algorithm A1

n has error

sup
f∈BLp(Q)

(

E sup
x∈Q

∣
∣
(
S(d)f

)
(x) −

(
A1

nf
)
(x)
∣
∣
p1

)1/p1

≤ ε

and for each f ∈ Lp(Q) and ω ∈ Ω it uses not more than

n ≤ c1d

(
1

ε

)p̄/(p̄−1)

function values of f and needs

≤ c2d
2

(
1

ε

)p̄/(p̄−1)

37

operations to set up the approximating function A1
n,ωf .

Moreover, having obtained A1
nf , a d-dimensional sampling array of size n can

be computed in

≤ c3(d)

(
1

ε

)p̄/(p̄−1)(

log

(
1

ε

))max(d−1,1)

operations, with the property that for each N ∈ N, xi ∈ Q (i = 1, . . . , N), the
values

(
A1

nf
)
(xi) (i = 1, . . . , N) can be computed in

c4(d)

(

log

(
1

ε

))d

N

operations.

For comparison, let us formulate the analogous result for the Smolyak-Monte
Carlo algorithm, which is a consequence of Theorem 4.5 and the cost analysis
given after its proof.

Corollary 6.7. Let d ∈ N, 1 < p ≤ ∞, 1 ≤ p1 < ∞, p1 ≤ p, and p̄ = min(p, 2).
Then there are constants c1−3(d) > 0 such that for each 0 < ε ≤ 1/2 there exist
m,L ∈ N0, m ≥ 2 with the following properties. The algorithm A3

m,L has error

sup
f∈BLp(Q)

(

E sup
x∈Q

∣
∣
(
S(d)f

)
(x) −

(
A3

m,Lf
)
(x)
∣
∣
p1

)1/p1

≤ ε

and for each f ∈ Lp(Q) and ω ∈ Ω it needs not more than

c1(d)(L+ 1)d−1mL

≤ c2(d)

(
1

ε

)p̄/(p̄−1)

if 2 < p ≤ ∞

(
1

ε

)p̄/(p̄−1)(

log

(
1

ε

))(1+ p
p−1)(d−1)

if 1 < p ≤ 2

function values of f and (up to a constant factor depending on d) the same number
of operations to set up the approximating function A3

m,Lf .
Furthermore, having obtained A3

m,Lf , for each N ∈ N, xi ∈ Q (i = 1, . . . , N),

the values
(
A3

m,Lf
)
(xi) (i = 1, . . . , N) can be computed in

≤ c3(d)

N if 2 < p ≤ ∞
(

log

(
1

ε

))d−1

N if 1 < p ≤ 2

operations.

38

On the basis of these results let us compare the total cost of both algorithms,
including the computation of N values of the approximating function. We assume
d to be fixed and consider the behaviour as ε→ 0, N → ∞. For 2 < p ≤ ∞ and,
if d = 1, also for 1 < p ≤ 2, the cost of the Smolyak-Monte Carlo algorithm is
(up to a constant factor depending on d) lower than that of the simple sampling
algorithm. On the other hand, for 1 < p ≤ 2 and d > 1 the cost of the Smolyak-
Monte Carlo algorithm can be anything from higher (N small relative to 1/ε) to
slightly lower than simple sampling (N large relative to 1/ε).

If d is large, the simple sampling algorithm with direct term-by-term com-
putation of cost ≤ cdnN is obviously preferable to the version with sampling
array computation and also to the Smolyak-Monte Carlo algorithm because of
the exponential dependence of the cost on d in the latter two.

6.3 Separability and measurability

In Section 5 we mentioned that the simple sampling algorithm

A1
n 6∈ Aran(BLp(Q), B0(Q)). (116)

We show that it does not have property 1 introduced in Section 5 (see below
(66)). Let f0(x) ≡ 1 (x ∈ [0, 1]d). Then by (3)

A1
n,ωf0 =

1

n

n∑

i=1

χ[ξi(ω),1̄] (ω ∈ Ω).

Define

Qi =

[
i− 1

n
,
i

n

)d

⊂ [0, 1]d = Q (i = 1, . . . , n),

K =
n∏

i=1

Qi ⊂ Qn.

For (x1, . . . , xn), (y1, . . . , yn) ∈ K we have
∥
∥
∥
∥
∥

1

n

n∑

i=1

χ[xi,1̄] −
1

n

n∑

i=1

χ[yi,1̄]

∥
∥
∥
∥
∥

B0(Q)

≥
1

n
(117)

whenever (x1, . . . , xn) 6= (y1, . . . , yn). Put

Ω0 = {ω ∈ Ω : (ξ1(ω), . . . , ξn(ω)) ∈ K}.

Clearly, P(Ω0) 6= 0. Moreover, if X is a separable subspace of B0(Q), then due
to (117), the set

KX =

{

(x1, . . . , xn) ∈ K :
1

n

n∑

i=1

χ[xi,1̄] ∈ X

}

39

is at most countable, which implies

P({ω ∈ Ω0 : A1
n,ωf0 ∈ X})

= P({ω ∈ Ω0 : (ξ1(ω), . . . , ξn(ω)) ∈ KX}) = 0 6= P(Ω0).

Hence, the mapping Φ : Ω → B0(Q) given by

Φ(ω) = A1
n,ωf0 (ω ∈ Ω)

is not essentially separably valued, and (116) follows.
Let us also mention that if we consider the canonical choice Ω = [0, 1]nd, Σ the

σ-algebra of all Lebesgue measurable subsets, P the Lebesgue measure on [0, 1]nd

and, for 1 ≤ i ≤ n,

ξi(ω) = xi (ω = (x1, . . . , xn) ∈ Qn = Ω),

then Φ is not Σ-to-Borel measurable. To see this, assume the contrary. We have
Ω0 = K and for ω = (x1, . . . , xn) ∈ Qn

Φ(ω) =
1

n

n∑

i=1

χ[xi,1̄].

Moreover, by (117), Φ is a one-to-one mapping of K onto

Z =

{

1

n

n∑

i=1

χ[xi,1̄] : (x1, . . . , xn) ∈ K

}

⊂ B0(Q).

Also by (117), each subset of Z is a closed subset of B0(Q), hence Borel measur-
able, implying that each subset of K is Lebesgue measurable, a contradiction.

The arguments above remain true when considering A1
n,ω as a mapping into

L∞(Q).

References

[1] A. Aho, J. Hopcroft, J. Ullman, The Desing and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Massachusetts, 1974.

[2] A. Defant, K. Floret, Tensor Norms and Operator Ideals, North Hol-
land, Amsterdam, 1993.

[3] R. M. Dudley, A course on empirical processes (École d’Été de Proba-
bilités de Saint-Flour XII-1982). Lecture Notes in Mathematics 1097,
2–141, Springer-Verlag, New York, 1984.

40

[4] S. Heinrich, Random approximation in numerical analysis, in: K. D.
Bierstedt, A. Pietsch, W. M. Ruess, D. Vogt (Eds.), Functional Anal-
ysis, Marcel Dekker, New York, 1993, 123–171.

[5] S. Heinrich, Monte Carlo approximation of weakly singular integral
operators, J. Complexity 22 (2006), 192–219.

[6] S. Heinrich, The randomized information complexity of elliptic PDE,
J. Complexity 22 (2006), 220–249.

[7] S. Heinrich, Randomized approximation of Sobolev embeddings II, J.
Complexity 25 (2009), 455–472.

[8] S. Heinrich, Randomized approximation of Sobolev embeddings III,
J. Complexity 25 (2009), 473–507.

[9] S. Heinrich, E. Novak, G. W. Wasilkowski, H. Woźniakowski, The
inverse of the star-discrepancy depends linearly on the dimension,
Acta Arithmetica 96 (2001), 279-302.

[10] A. Hinrichs, Covering numbers, Vapnik-Červonenkis classes and
bounds for the star-discrepancy, J. Complexity 20 (2004), 477–483.

[11] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer,
Berlin–Heidelberg–New York, 1991.

[12] W. A. Light, W. Cheney, Approximation Theory in Tensor Product
Spaces, Lecture Notes in Mathematics 1169, Springer-Verlag, Berlin,
1985.

[13] J. Matoušek, Geometric Discrepancy. An Illustrated Guide, Springer,
Berlin, 1999.

[14] E. Novak, Deterministic and Stochastic Error Bounds in Numeri-
cal Analysis, Lecture Notes in Mathematics 1349, Springer-Verlag,
Berlin, 1988.

[15] E. Novak, The real number model in numerical analysis, J. Complex-
ity 11 (1995), 57–73.

[16] E. Novak, H. Triebel, Function spaces in Lipschitz domains and op-
timal rates of convergence for sampling, Constr. Approx. 23 (2006),
325–350.

[17] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems,
Volume 1, Linear Information, European Math. Soc., Zürich, 2008.

41

[18] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems,
Volume 2, Standard Information for Linear Functionals (in prepara-
tion).

[19] G. Pisier, Remarques sur les classes de Vapnik-Červonenkis, Ann.
Inst. Henri Poincaré, Probab. Stat. 20 (1984), 287–298.

[20] W. Sickel, T. Ullrich, Tensor products of Sobolev-Besov spaces and
applications to approximation from the hyperbolic cross, J. Approx.
Theory 161 (2009), 748–786.

[21] J. F. Traub, G. W. Wasilkowski, H. Woźniakowski, Information-Based
Complexity, Academic Press, 1988.

42

