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Abstract

We study the complexity of randomized solution of initial value
problems for systems of ordinary differential equations (ODE). The
input data are assumed to be γ-smooth (γ = r+% : the r-th derivatives
satisfy a %-Hölder condition). Recently, the following almost sharp
estimate of the order of the n-th minimal error was given by Kacewicz
(Almost optimal solution of initial-value problems by randomized and
quantum algorithms, J. Complexity 22 (2006), 676-690):

c1n
−γ−1/2 ≤ erann ≤ c2(ε)n

−γ−1/2+ε,

with an arbitrary ε > 0. We present a Taylor Monte Carlo method
and show that it has error rate n−γ−1/2, this way establishing the exact
order of the randomized n-th minimal error.

1 Introduction

We consider the numerical solution of initial value problems for systems of
ODE

y′(x) = f(x, y(x)) (x ∈ [a, b]), (1)

y(a) = y0, (2)

with y0 ∈ R
d and f : [a, b]×R

d → R
d (precise assumptions on f will be given

below). Randomized algorithms for such problems where first considered by
Stengle [14, 15]. In [14] a general family of such algorithms was introduced,
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while [15] contains a convergence analysis for a specific member of that
family (a method of maximal order 2). Quasi-Monte Carlo methods of
similar nature were introduced and studied by Coulibaly and Lécot [2, 12].

In the framework of information-based complexity (IBC) the randomized
solution of initial value problems for systems of ODE was first studied by
Kacewicz in [9, 10, 11]. He seeks to find optimal algorithms for input data
of an arbitrary, fixed degree of smoothness (and thus, methods of arbitrary
high order have to be considered). For this purpose on each interval of a
uniform partition of [a, b] an integral is treated by a suitable Monte Carlo
method with variance reduction. Iterative refinement then leads to an order
of convergence which matches the lower bound up to an arbitrary ε > 0 in
the exponent (see [11] and relation (8) below). The precise order of the n-th
minimal error, however, remained open.

In this paper we solve this problem. Moreover, we show that a simple
direct approach, namely taking the uniform grid and for each interval just
one random sample for a suitable integral leads to the optimal order. Our
variance reduction is based on the Taylor method like that in [11], however,
a simpler control variate is used. The convergence analysis uses certain mar-
tingale inequalities, similar to [15]. In addition to the stochastic convergence
rate we show that the proposed method is also optimal in the deterministic
setting, meaning that the optimal order is obtained for each fixed realiza-
tion of the involved random variables (with constants not depending on the
realization).

We consider a somewhat larger family of function classes than done in
[9, 10, 11], including those with no or small (Hölder) smoothness in x (time)
and just the Lipschitz condition in y (space). Our results imply that for
such classes deterministic solution can be arbitrarily hard, up to intractable
(no smoothness), while randomized algorithms still provide a convergence
rate of n−1/2.

The paper is organized as follows. In Section 2 we introduce the precise
problem formulation, describe basics of the framework of IBC, and state
the main result. Section 3 contains the algorithm, its analysis and, based
on this, the proof of the main result. In section 4 we give some further
comments and results, including an estimate of the error distribution and
the comparison between deterministic and randomized setting.
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2 Preliminaries

Let d ∈ N, where N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }, and let |·| denote the
Euclidean norm on R

d. For −∞ < a < b < +∞, κ,L > 0, r ∈ N0, 0 ≤ % ≤ 1
we consider the following class Cr,%

d (a, b, κ, L) of functions f : [a, b]×R
d → R

d

having continuous partial derivatives Dα with α = (α0, α1, . . . , αd) ∈ N
d+1
0

of order |α| = α0 + α1 · · · + αd ≤ r

Dαf(x, z) =
∂|α|f(x, z)

∂xα0∂zα1

1 . . . ∂zαd

d

satisfying

|Dαf(x, z)| ≤ κ (|α| ≤ r), (3)

|Dαf(x, z) −Dαf(t, v)| ≤ κ(|x− t|% + |z − v|%) (|α| = r), (4)

|f(x, z) − f(x, v)| ≤ L|z − v| (5)

for x, t ∈ [a, b], z, v ∈ R
d. We denote the total degree of smoothness by

γ = r + %.

For example, C0,0
d (a, b, L, κ) consists of bounded functions just continuous

in x and satisfying a Lipschitz condition with respect to y. The Cr,%
d are

also the classes considered in [11] (up to equivalence in the sense of being
contained in scalar multiples of each other), except that in [11] % > 0 and
γ ≥ 1 were assumed. This latter restriction results from the reduction to
autonomous systems and the Lipschitz condition imposed upon them. It
turns out though that the cases C0,%

d with 0 ≤ % < 1 are particularly in-
teresting for the comparison between deterministic and randomized setting,
see the comments in section 4.

We work in the setting of IBC, as discussed in [16, 13]. For the precise
notions used here we refer to [4, 5]. An abstract numerical problem is
described by a tuple P = (F,G, S,K,Λ). The set F is the set of input
data, in our case

F =
{

(f, y0) : f ∈ Cr,%
d (a, b, κ, L), y0 ∈ R

d, |y0| ≤ σ
}

, (6)

where σ > 0 is any fixed number, G is a normed linear space and S : F → G
an (in general nonlinear) operator, the solution operator, which maps the
input ψ ∈ F to the exact solution S(ψ). In our case we put G = B([a, b],Rd),
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the space of all R
d-valued, bounded on [a, b] functions, equipped with the

supremum norm
‖g‖∞ = sup

x∈[a,b]
|g(x)|.

Then for (f, y0) ∈ F we let S(f, y0) = y be the solution of the initial value
problem (1–2). The choice of G means that we measure the error in the
uniform norm. The setK is the scalar field R, and Λ is the class of admissible
information functionals, that is, Λ is a set of mappings from F to K = R.
Here we put

Λ = {δα
i,s : 1 ≤ i ≤ d, s ∈ [a, b] × R

d, α ∈ N
d+1
0 , |α| ≤ r} ∪ {δi : 1 ≤ i ≤ d},

where

δα
i,s(f, y0) = Dαfi(s),

δi(f, y0) = y0,i,

and fi and y0,i are the i-th components of f and y0, respectively. Hence the
admissible information consists of values of the components of f and their
derivatives (and, of course, the initial values).

The precise notion of an abstract adaptive randomized algorithm is tech-
nically somewhat involved, so here we just sketch some basic features and
refer to [4, 5] for details. A randomized algorithm for the solution of P is a
family A = (Aω)ω∈Ω, where (Ω,Σ,P) is the underlying probability space and
each Aω is a mapping Aω : F → G. With ω – the parameter incorporating
all randomness of the algorithm – being fixed, Aω : F → G is a deterministic
abstract algorithm, that is, stands for a deterministic procedure depending
on ω which uses values of information functionals on (f, y0) in an adaptive
way to produce an approximation Aω(f, y0) to S(f, y0) = y. The error of A
is defined as

e(S,A, F ) = sup
(f,y0)∈F

(

E ‖S(f, y0) − Aω(f, y0)‖
2
∞

)1/2
.

Another important quantity related to an algorithm A is the cardinality
card(A,F ). Let card(Aω, f, y0) be the number of information functionals
called in the course of computation of Aω(f, y0). Then we put

card(A,F ) = sup
(f,y0)∈F

(

E card(Aω, f, y0)
2
)1/2

.

The quantity card(A,F ) will be our cost measure. Although this notion
of cost neglects arithmetic operations, we shall see that the order optimal
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algorithm studied later has a number of arithmetic operations proportional
to the cardinality.

The crucial quantity of IBC, the n-th minimal error, is defined for n ∈ N0

as
eran
n (S, F ) = inf

card(A,F )≤n
e(S,A, F ).

That is, eran
n (S, F ) is the minimal possible error among all randomized al-

gorithms that use (on the average) at most n information functionals.
The deterministic setting can be viewed as a special case of the above by

admitting only trivial one-point probability spaces Ω = {ω0} (meaning that
there is no dependence on randomness). We use the notation edet

n (S, F ) for
the n-th minimal error in this setting.

Now let us recall previous results on the complexity of the initial value
problem (1–2), due to Kacewicz. For the deterministic setting the following
holds: There are constants c1, c2 > 0 such that for all n ∈ N

c1n
−γ ≤ edet

n (S, F ) ≤ c2n
−γ . (7)

This is essentially shown in [6, 7, 8], see also the comments on p. 827 of
[9] and those after Proposition 3 of the present paper. For the randomized
setting it is proved in [11] that there is a constant c1 > 0 and for each ε > 0
a constant c2(ε) > 0 such that for all n ∈ N

c1n
−γ−1/2 ≤ eran

n (S, F ) ≤ c2(ε)n
−γ−1/2+ε. (8)

In this paper we show that the lower bound of (8) is sharp. The main result
is the following

Theorem 1. Let r ∈ N0, 0 ≤ % ≤ 1, a < b, κ,L, σ > 0, let F be defined by
(3–6) and let γ = r + %. Then there are constants c1, c2 > 0 such that for
all n ∈ N the n-th minimal error of the initial value problem (1–2) satisfies

c1n
−γ−1/2 ≤ eran

n (S, F ) ≤ c2n
−γ−1/2. (9)

3 The algorithm and its analysis

We fix n ∈ N, n ≥ 2, put h = (b−a)/n, xk = a+kh (k = 0, 1, . . . , n) and let
ξk (k = 1, . . . , n− 1) be independent random variables on some probability
space (Ω,Σ,P), with ξk(ω) ∈ [xk−1, xk] for all ω ∈ Ω and ξk being uniformly
distributed on [xk−1, xk]. Inductively define yk ∈ R

d for k = 1, . . . , n− 1 as
follows. Let 0 ≤ k < n− 1 and suppose that yk is already defined (y0 is the
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initial value). Let uk(x) (x ∈ [xk, xk+1]) be the solution of the local initial
value problem

u′k(x) = f(x, uk(x)) (x ∈ [xk, xk+1]), (10)

uk(xk) = yk. (11)

The smoothness of f implies that uk is (r + 1)-times continuously differen-
tiable and for j = 2, . . . , r + 1 and x ∈ [xk, xk+1]

u
(j)
k (x) =

(

∂

∂x
+

d
∑

i=1

fi(x, z)
∂

∂zi

)j−1

f(x, z)

∣

∣

∣

∣

∣

∣

z=uk(x)

. (12)

Let

pk(x) =
r+1
∑

j=0

u
(j)
k (xk)

j!
(x− xk)

j (x ∈ [xk, xk+1]) (13)

be the Taylor polynomial of degree r + 1 of uk(x) in the point xk. By (10)

and (12), the values u
(j)
k (xk) needed for the coefficients of pk in (13) can be

expressed by values of f and its partial derivatives up to order r at the point
(xk, yk). Now we put

yk+1 = pk(xk+1) + h
(

f(ξk+1, pk(ξk+1)) − p′k(ξk+1)
)

. (14)

Having determined the yk, the full approximate solution ȳ(x) on [a, b] is now
defined as

ȳ(x) =

{

pk(x) if x ∈ [xk, xk+1) and 0 ≤ k < n− 1,
pn−1(x) if x ∈ [xn−1, xn].

(15)

While the choice (15) is clear, let us give some motivating explanations for
(14): In a first step we approximate

y(xk+1) = y(xk) +

∫ xk+1

xk

f(t, y(t))dt

≈ yk +

∫ xk+1

xk

f(t, pk(t))dt. (16)

This is the (order optimal) approximation from [8] in the setting where
arbitrary linear information is admissible. In the setting considered here
only values of functions and derivatives are allowed. Thus, we approximate
the last integral. This is done by a variance reduced Monte Carlo method
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with one sample. Namely, we use p′k(t) as a control variate for f(t, pk(t)).
Indeed, p′k(t) is an approximation to u′k(t) = f(t, uk(t)), which, in turn,
is close to f(t, pk(t)) (the rates of approximation of these quantities are
analysed below). Thus,

∫ xk+1

xk

f(t, pk(t))dt

=

∫ xk+1

xk

p′k(t)dt+

∫ xk+1

xk

(f(t, pk(t)) − p′k(t))dt

≈ pk(xk+1) − pk(xk) + h
(

f(ξk+1, pk(ξk+1)) − p′k(ξk+1)
)

. (17)

We insert (17) into (16). Since pk(xk) = yk, this leads to (14).
Now we estimate the error of this algorithm. Note that throughout

the paper c, c1, c2, . . . stand for constants, depending only on the problem
parameters d, r, %, a, b, L, κ, σ, but neither on the quantitative algorithm pa-
rameters n, k, etc. nor on the particular input (f, y0). Moreover, the same
symbol may denote different constants, even in a sequence of relations.

Proposition 1. There is a constant c > 0 such that for all (f, y0) ∈ F and
for all n ∈ N with n ≥ 2 the error of the algorithm described above satisfies

(

E ‖y − ȳ‖2
∞

)1/2
≤ cn−γ−1/2. (18)

Proof. We first note the following smoothness properties of the uk: There
are constants c1, c2 > 0 such that for all (f, y0) ∈ F , n, and k, the following
hold:

|u
(j)
k (x)| ≤ c1 (x ∈ [xk, xk+1], 0 ≤ j ≤ r + 1) , (19)

|u
(r+1)
k (x) − u

(r+1)
k (t)| ≤ c2|x− t|% (x, t ∈ [xk, xk+1]) . (20)

Indeed, for j ≥ 1 relation (19) is an immediate consequence of (3), (10),
and (12). This, in turn, together with (13) and (14) implies |yk| ≤ c, and
hence (19) also for j = 0. To see (20), we observe that, using (10) and (12),

each component of the function u
(r+1)
k (x) can be expressed as a sum of M

products of the form
m
∏

l=1

(

Dβlfil

)

(x, uk(x))

with

m ≤ r + 1, βl ∈ N
d+1
0 , 1 ≤ il ≤ d,

m
∑

l=1

|βl| = r,

7



and M depending only on r and d. Now (20) follows from (4) and (19). By
the Taylor series with integral remainder term, we have

uk(x) = pk(x) +
1

r!

∫ x

xk

(x− t)r
(

u
(r+1)
k (t) − u

(r+1)
k (xk)

)

dt. (21)

We denote
µk = sup

x∈[xk ,xk+1]
|uk(x) − pk(x)|. (22)

This is the deviation of the approximate solution ȳk given by (15) from the
solution (10–11) of the local problem on [xk, xk+1]. From (20) and (21) we
obtain

µk ≤ chr+1+% = chγ+1. (23)

Differentiating (21) we get for r ≥ 1

u′k(x) = p′k(x) +
1

(r − 1)!

∫ x

xk

(x− t)r−1
(

u
(r+1)
k (t) − u

(r+1)
k (xk)

)

dt, (24)

which gives, using (20) again,

sup
x∈[xk ,xk+1]

|u′k(x) − p′k(x)| ≤ chγ. (25)

This also holds for r = 0 (hence γ = %) since in this case p′k(x) ≡ u′k(xk),
and we can apply (20) directly. Using (5), (10), (22), (23), and (25) we get

sup
x∈[xk,xk+1]

|f(x, pk(x)) − p′k(x)|

≤ sup
x∈[xk,xk+1]

(

|f(x, pk(x)) − f(x, uk(x))| + |f(x, uk(x)) − p′k(x)|
)

≤ Lµk + sup
x∈[xk,xk+1]

|u′k(x) − p′k(x)| ≤ chγ (26)

(this explains why we use p′k(x) as a control variate to f(x, pk(x))). Finally
we observe that Gronwall’s lemma yields

sup
x∈[xk,xk+1]

|y(x) − uk(x)| ≤ eLh|y(xk) − yk|. (27)

Let Ek denote the conditional expectation with respect to the σ-algebra
Ak ⊆ Σ generated by {ξ1, . . . , ξk} and let E 0 = E be just the expectation.
Then we get from (14)

Ekyk+1 = yk +

∫ xk+1

xk

f(t, pk(t))dt. (28)
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We denote the error in the point xk by

ek = y(xk) − yk

and split it at step k + 1 as

ek+1 = ek + gk+1 + dk+1 + ηk+1 (29)

with

gk+1 =

∫ xk+1

xk

(f(t, y(t)) − f(t, uk(t))) dt, (30)

dk+1 =

∫ xk+1

xk

(f(t, uk(t)) − f(t, pk(t))) dt, (31)

and

ηk+1 = yk +

∫ xk+1

xk

f(t, pk(t))dt− yk+1. (32)

Let us mention the meaning of the error terms in (29). We have

gk+1 = y(xk+1) − uk(xk+1) − (y(xk) − yk),

so gk is the change due to propagation of the error from xk to xk+1 along
the trajectories given by the differential equations (1–2) and (10–11), while

dk+1 + ηk+1 = uk(xk+1) − yk+1

is the local error. Moreover, by (28),

dk+1 = uk(xk+1) − Ekyk+1,

ηk+1 = Ekyk+1 − yk+1, (33)

hence dk+1 is the conditional mean of the local error, and ηk+1 its fluctuation
around the mean.

Next we estimate these error terms. From (22), (23), (27), and Lipschitz
continuity (5) we get

|gk+1| ≤ ch|ek|, (34)

|dk+1| ≤ chγ+2. (35)
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Furthermore, (14) gives

ηk+1 = yk +

∫ xk+1

xk

f(t, pk(t))dt

−
(

pk(xk+1) + h(f(ξk+1, pk(ξk+1)) − p′k(ξk+1))
)

=

∫ xk+1

xk

(

f(t, pk(t)) − p′k(t)
)

dt

−h(f(ξk+1, pk(ξk+1)) − p′k(ξk+1)). (36)

Therefore (26) implies
|ηk+1| ≤ chγ+1. (37)

From (29) and e0 = 0 we get

ek =
k
∑

j=1

(gj + dj + ηj).

This together with (34) gives for 1 ≤ k ≤ n− 1

max
0≤j≤k

|ej| ≤
k
∑

j=1

|gj| +
k
∑

j=1

|dj| + max
1≤j≤k

∣

∣

∣

j
∑

i=1

ηi

∣

∣

∣

≤ ch
k−1
∑

j=0

|ej | +
k
∑

j=1

|dj| + max
1≤j≤k

∣

∣

∣

j
∑

i=1

ηi

∣

∣

∣

≤ ch
k−1
∑

j=0

max
0≤i≤j

|ei| +
k
∑

j=1

|dj| + max
1≤j≤k

∣

∣

∣

j
∑

i=1

ηi

∣

∣

∣. (38)

We introduce the function v(x) for x ∈ [a, b] by

v(x) =

{

max0≤j≤k |ej| if x ∈ [xk, xk+1) and 0 ≤ k < n− 1,
max0≤j≤n−1 |ej| if x ∈ [xn−1, xn].

It follows from (38) that for x ∈ [a, b]

v(x) ≤ c

∫ x

a
v(t)dt+

n−1
∑

j=1

|dj | + max
1≤k≤n−1

∣

∣

∣

k
∑

i=1

ηi

∣

∣

∣
.
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From Gronwall’s lemma we conclude

max
0≤k≤n−1

|ek| = v(b) ≤ ec(b−a)





n−1
∑

j=1

|dj| + max
1≤k≤n−1

∣

∣

∣

k
∑

i=1

ηi

∣

∣

∣





≤ c

n−1
∑

j=1

|dj| + c max
1≤k≤n−1

∣

∣

∣

k
∑

i=1

ηi

∣

∣

∣. (39)

Using (22), (27), and (39) we get

‖y − ȳ‖∞ = max
0≤k≤n−1

sup
x∈[xk,xk+1]

|y(x) − pk(x)|

≤ max
0≤k≤n−1

sup
x∈[xk,xk+1]

(|y(x) − uk(x)| + |uk(x) − pk(x)|)

≤ max
0≤k≤n−1

(c|ek| + µk)

≤ c

n−1
∑

j=1

|dj| + c max
1≤k≤n−1

∣

∣

∣

k
∑

i=1

ηi

∣

∣

∣+ max
0≤k≤n−1

µk. (40)

Consequently,

E ‖y − ȳ‖2
∞

≤ cE

( n−1
∑

j=1

|dj|

)2

+ cE max
1≤k≤n−1

∣

∣

∣

k
∑

i=1

ηi

∣

∣

∣

2
+ 2 E max

0≤k≤n−1
µ2

k. (41)

By (33) the sequence of random variables
(

∑k
i=1 ηi

)n−1

k=1
is a martingale,

and by convexity of the norm | · |,
(

∣

∣

∣

k
∑

i=1

ηi

∣

∣

∣

)n−1

k=1

is a non-negative submartingale. From Doob’s inequality ([3], Ch. VII, Th.
3.4) we obtain

E max
1≤k≤n−1

∣

∣

∣

k
∑

i=1

ηi

∣

∣

∣

2
≤ 4E

∣

∣

∣

n−1
∑

i=1

ηi

∣

∣

∣

2
= 4

n−1
∑

i=1

E |ηi|
2. (42)

Combining this with (41) yields

E ‖y − ȳ‖2
∞

≤ cE

( n−1
∑

j=1

|dj|

)2

+ c
n−1
∑

i=1

E |ηi|
2 + 2 E max

0≤k≤n−1
µ2

k. (43)
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It remains to insert the estimates (35), (37), and (23) to obtain

E ‖y − ȳ‖2
∞ ≤ ch2γ+1, (44)

which completes the proof of Proposition 1.

Proof of Theorem 1. The upper bound follows directly from Proposition 1
and the obvious fact that the algorithm needs not more than cn values of
function f and its derivatives. Formally, this covers the case n ≥ c0 for some
c0 > 0. For n < c0 it suffices to use the trivial zero algorithm Aω(f, y0) ≡ 0
since, as easily seen, for all (f, y0) ∈ F the solution y = S(f, y0) satisfies
‖y‖∞ ≤ σ + κ(b− a).

Concerning the lower bound, it clearly suffices to consider the case d =
1. We shall reduce an integration problem to the solution of initial value
problems. Let

F0 = Cr,%
0 (a, b, κ)

be the set of all functions f : [a, b] → R satisfying for x, t ∈ [a, b]

|f (j)(x)| ≤ κ (0 ≤ j ≤ r), (45)

|f (r)(x) − f (r)f(t)| ≤ κ|x− t|%, (46)

let G0 = R and define S0 : F0 → G0 by

S0(f) =

∫ b

a
f(t)dt.

Moreover, let K0 = R and

Λ0 = {δj
s : s ∈ [a, b], 0 ≤ j ≤ r}

with δj
s(f) = f (j)(s). Finally, let

R : F0 → F = Cr,%
1 (a, b, κ, L) × [−σ, σ],

be defined by
R(f) = (f̄ , 0)

where f̄ is just f , considered as a function of two variables x, z, with no
dependence on z, and let Ψ : B([a, b],R) → R be given by

Ψ(g) = g(b).
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Obviously,
S0 = Ψ ◦ S ◦R.

This shows that the integration problem P0 = (F0, G0, S0,K0,Λ0) reduces
to P (see [5] for the formal definition and additional details like the require-
ments on R, which are easily seen to be satisfied here). Consequently, for
all n

eran
n (S0, F0) ≤ ‖Ψ‖eran

n (S, F ) = eran
n (S, F ),

since ‖Ψ‖ = 1. On the other hand, it is well-known that there are constants
c1, c2 > 0 such that for all n

c1n
−γ−1/2 ≤ eran

n (S0, F0) ≤ c2n
−γ−1/2

(see [13], 2.2.9, Prop. 2).

Remark. Note that not only the number of information calls, but also
the number of arithmetic operations of the algorithm presented above is
bounded by cn.

4 Comments

Besides determining the average (mean square) error we may also estimate
the distribution of the error, and in particular, the probability that the op-
timal rate is achieved. Due to uniform boundedness of the involved random
variables we are able to show an exponential decay of the probability of the
exceptional set:

Proposition 2. There are constants c1, c2 > 0 such that for all (f, y0) ∈ F ,
n ∈ N with n ≥ 2, and for all τ ≥ c1, the error of the algorithm from section
3 satisfies

P

{

‖y − ȳ‖∞ > τn−γ−1/2
}

≤ exp(−c2τ
2). (47)

Proof. Put

ν2 =

n−1
∑

i=1

‖ηi‖
2
L∞(Ω,Σ,P). (48)

Then for all θ > 0

P

{

max
1≤k≤n−1

∣

∣

∣

k
∑

i=1

ηi

∣

∣

∣ > θ

}

≤ c1 exp

(

−
c2θ

2

ν2

)

. (49)
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For d = 1 this is the Hoeffding-Azuma maximal inequality (see, e.g., [1],
Remark 1 and Lemma 2, which imply (49)). The case d > 1 follows by
considering the coordinates separately. Now (47) is a consequence of (37),
(48), and (49).

Let us mention that the proposed method is also of optimal order in the
deterministic setting, in the following sense: Fix any values (realizations)
of ξk ∈ [xk−1, xk] (k = 1, . . . , n − 1). This way the algorithm becomes
deterministic. Then we have

Proposition 3. There is a constant c > 0 such that for all (f, y0) ∈ F ,
n ∈ N with n ≥ 2, and for all (deterministic) numbers ξk ∈ [xk−1, xk]

‖y − ȳ‖∞ ≤ cn−γ.

Proof. This follows readily from(37) and (40).

Note that this way we recover the upper bound in Kacewicz’s result (7)
for the deterministic setting. Formally, this also fills in the cases r = 0,
0 ≤ % < 1 not considered in [6, 7, 8]. (However, this could also be obtained
by a standard analysis of the Euler method.) Concerning the lower bound,
the argument used in the proof of Theorem 1 works also for the deterministic
setting and the respective deterministic integration results can be found in
[13], Prop. 1.3.9. Let us also mention that Kacewicz’s lower bounds in [6, 7]
and [10] are stronger in the sense that they hold for the smaller class of
autonomous problems, which requires different proof techniques.

There is another aspect of Proposition 3: For γ > 0, the deviation
from the true solution is controlled deterministically, so it suffices to assume
the smoothness just in a suitable neighbourhood of the trajectories of the
solutions rather than on all of [a, b] × R

d. (For γ = 0 one has to resort to
Proposition 2.)

Comparing the rate of the deterministic (7) with that of the randomized
setting (9), we see that there is always a speedup of order n−1/2. Now
consider the case r = 0 and % > 0 small. Then the deterministic rate is n−%,
the randomized rate is n−%−1/2, so the relative speedup (%+ 1/2)/% can be
arbitrarily large for functions of low smoothness – we thus have a similar
effect as for (high dimensional) integration. In the limiting case r = % = 0
there are no deterministic algorithms with a rate convergent to zero, since
edet
n (S, F ) ≥ c > 0 for all n, while there are randomized algorithms of

convergence order n−1/2.
With the approach presented above, other algorithms can be analyzed, as

well. For example, instead of the control variate p′k we could have taken the

14



one used by Kacewicz in [9] – the Taylor expansion of f , with pk inserted.
Since for the resulting algorithm a relation analogous to (26) holds (see
the Lemma on p. 828 of [9]), our analysis shows that Kacewicz’s original
algorithm, but with just one sample per interval, is optimal, too (though
the method of proof of [9] would only give the rate n−γ).
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