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Abstract

Recently the adaption problem of Information-Based Complexity (IBC) for linear prob-
lems in the randomized setting was solved in Heinrich (2024)[7]. Several papers treating
further aspects of this problem followed. However, all examples obtained so far were
vector-valued. In this paper we settle the scalar-valued case. We study the complexity
of mean computation in finite dimensional sequence spaces with mixed LIJDV norms. We
determine the n-th minimal errors in the randomized adaptive and non-adaptive setting.
It turns out that among the problems considered there are examples where adaptive and
non-adaptive n-th minimal errors deviate by a power of n. The gap can be (up to log
factors) of the order n'/%. We also show how to turn such results into infinite dimensional
examples with suitable deviation for all n simultaneously.

1 Introduction

Let N,Ni,Ny, € N, 1 < p,u < oo, and let L;,V be the space of all functions f : Z[1, N] :=
{1,2,..., N} = K with the norm

1<i<N

N 1/p
1fllzy = (%Zlf(iﬂ”) (p<o0), [flley = max |f(@)].
=1

Define the space L) (L}?) as the set of all functions f : Z[1, Ni] x Z[1, No] — K endowed with
the norm

1710 ey = || () 2

Ny?
Lp

where f; = (f(Z,j));V:QI are the rows of the matrix (f(¢,7)). In the present paper we study the
complexity of mean computation in the randomized setting. We determine the order of the
randomized n-th minimal errors of

N1 N2
1
[N1,N2 . L;}Vl (LUN2) — K, ]Nthf = NN, E E f(Z,]) (1)
i=1 j=1
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The input set is the unit ball of L;V ! (Lfy?) and information is standard (values of f).

The adaption problem of Information-Based Complexity (IBC) for linear problems is con-
cerned with the relation between adaptive and non-adaptive n-th minimal errors. In 1980 Gal,
Micchelli [1] and Traub, Wozniakowski [16] showed that in the deterministic setting adaptive
and non-adaptive deterministic n-th minimal errors can deviate at most by a factor of 2: for
any linear problem P = (F,G,S, K,A) and any n € N

e;iletfnon(sg F, G) < 2626t(57 F, G) (2>

In 1996 Novak [12] posed the respective problem for the randomized setting: Is there a constant
¢ > 0 such that for all linear problems P = (F,G, S, K,A) and all n € N

e (S L G) < cel™(S, F,G)? (3)

See the problem on p. 213 of [12], and also Problem 20 on p. 146 of the monograph [13] by
Novak and Wozniakowski (2008). This problem was solved recently by the author in [7], where
it was shown that for some instances of vector-valued mean computation the gap between non-
adaptive and adaptive randomized n-th minimal errors can be (up to log factors) of order n'/%.
Considering vector valued approximation, it was shown in another paper by author [9] that the
gap can be n'/? (again, up to log factors). Both papers deal with standard information, that is,
function values. Problem (3) remained open for the case of arbitrary linear information (that
is, A consists of all linear functionals on F'). This was settled recently by Kunsch, Novak, and
Wnuk [10].

All counter-examples to problem (3) given so far were vector valued. The scalar-valued case
G = K remained open. In the present paper we show that the answer is negative, as well. In
the case 1 < p < 2 < u < oo of mean computation (1) adaptive and non-adaptive randomized
n-th minimal errors deviate by a power of n, see relations (98) and (99) of Theorem 4.4. This
is done by showing that for each n there is a finite dimensional integration problem so that the
gaps increase with growing n.

This raises the question about infinite dimensional examples with respective gaps for all
n simultaneously. For vector-valued mean computation such an example - namely parametric
integration - was presented in [8]. We show that there are such infinite dimensional examples
also for integration. For this purpose we use an approach different from that in [8]. We present
a general way of passing from finite into infinite dimensional examples by the help of direct
sums.

The paper is organized as follows. In Section 2 we recall the basic notions of IBC and
present some auxiliary facts. Moreover, this section contains a new general result on the average
case setting for sum problems. Section 3 presents non-adaptive and adaptive algorithms for
mean computation and their error estimates. Lower bounds and the main complexity result
are contained in Section 4, while Section 5 is devoted to the procedure of passage to infinite
dimensional problems for mean computation (Subsection 5.1) as well as, based on the results
of [9], for approximation (Subsection 5.2).

2 Preliminaries
We denote N = {1,2,...}, Ny = NU {0}, and Z[Ny, Ny = {1,2,..., N} for N;, Ny € Ny,

N; < N,. The symbol K stands for the scalar field R or C. We often use the same symbol
¢, C1,Co, ... for possibly different constants, even if they appear in a sequence of relations.
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However, some constants are supposed to have the same meaning throughout a proof — these
are denoted by symbols ¢(1),¢(2),.... The unit ball of a normed space X is denoted by By.
Throughout the paper log means log,.

We adopt the general IBC notation as presented in in Section 2 of [7]. For background and
all details we refer to [7] as well as to [11, 15] and [3, 4]. An abstract numerical problem P is
given as

P =(FG, S, K,A). (4)

where F' is a non-empty set, G a Banach space and S is a mapping F' — G. Furthermore, K is
any nonempty set and A is a nonempty set of mappings from F' to K. The operator S is called
the solution operator and A the set of information functionals. A problem P is called linear, if
K =K, F is a convex and balanced subset of a linear space X over K, S is the restriction to
F of a linear operator from X to GG, and each A € A is the restriction to F' of a linear mapping
from X to K.

For n € Ny the adaptive (respectively non-adaptive) deterministic n-th minimal error of S
is denoted by ed°*(S, F, G) (ed*mon(S F 3)). Correspondingly, e**(S, F,G) (er (S| F, G)
stand for the adaptive (respectively non-adaptive) randomized n-th minimal error of S. Fur-
thermore, given a probability measure g on F whose support is a finite set, e2'8(S, u, G)
(eaveron(S 11 (7)) denote the adaptive (respectively non-adaptive) n-th minimal average error
of S.

The following relations hold for n € Ny

ed(S, F.G) < eltron(S FQ) (5)
eSS FG) < e NS FLG) (6)
(S, F,G) < (S, F,QG) (7)
et NS, FLG) < et S, FLG) (8)
e (S, G) < e NS, G) (9)
and for each probability measure p on F' of finite support
1
67rwan(s7 Fa G) > 5‘33?(5,/% G) (1())
1
NS, FLG) 2 e (S, 1, G). ()

Similar to [7], Section 2, we need some further general results on algorithms in product
structures. Let M € N and let P; = (F;, G, S;, K;, A;) (i = 1,..., M) be numerical problems
(with the same target space G for all 7). We assume that for each i none of the elements of A;
is constant on Fj, that is,

for all A € A; there exist fi, fo € F; with A(f1) # A(f2). (12)

Define the sum problem P = (F,G, S, K, A) by

M M M M
F=][F S:F—=G S(f,....fu)=>_Sif), K=K, A=[J®(Ar),
=1 =1 =1 =1

where
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and Z (F, K) stands for the set of all mappings from F' to K. Observe that (12) implies
D;(A)NDP;(A;) =0 (i # 7). For 1 <i < M we set

Fi= ] F-
1<j<M,j#i

If 7 is fixed, we identify, for convenience of notation,
F  with Exﬂla f:(f1a7f’man>€F with f:(flafz,%

where
fz/ = (fl; v 7fz'—17fi+17 <. 7fM) S F;Z/‘
Let fi’?0 = (fir0,---s fiic105 fiit1,05 -+, finmo) € F} be fixed elements with the property

S Silfiio) =0, (13)
1<5<M,j#i

and let

Jii Fs = F, J(fi) = (fi, fio) (fi € Fy). (14)
Now let p; be probability measures on F; whose support is a finite set and let 1; > 0 be reals
with Zf\il v; = 1. We define a measure p on F' of finite support by setting for a set C' C F

p(C) = Zwm(n]{l(C))- (15)

Lemma 2.1. With the notation above and under assumption (12) we have for each n € Ny

M M
ens (S, u, G) > min { Z vien® "N (S;, i, G) - my € No,n; >0, Zn, < n} (16)

=1 =1

Proof. Let A be a non-adaptive deterministic algorithm for P with card(A) < n. Let n; be the
number of those information functionals of A which are from ®;(A;). Then

M
Zni <n. (17)
i=1

For fixed ¢ we will use Lemma 2.1 of [7] with

) — F, F@ — F! KO — K;, K® — U K,
JijFe
AW =d;(A;), AP = ] ().
JijFe
Let
Pp, = (1, G, Sy Kiy Ay ),

7

Sy (fi) = S(fi, flo) (fi€ Fi), Apy={A, fio) + A€ 2i(Ai)}.

be the restricted problem obtained by fixing the second component to be f},, that is,
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Now Lemma 2.1 of [7] shows that there is a deterministic non-adaptive algorithm A; s , for Py |
such that for all f; € F} ’ ’

Ay () = AU fly) (18)
card(As ) = i (19)
Moreover, by (13), for f; € F;
Spio(fi) = S(fir fio) = Silf:) + 3 Sifizo) = Silfi), (20)
jii

and, since for \; € A; we have (®;(\,))(f:, f/ ) N(fo),
Ay, = 0 flo) A€ Bi(A)} = {( @A)+, flo) : A € A} = A

This implies Pf/ = P;, so A; Lo is a deterministic non-adaptive algorithm for P;. From (14),
(18), and (20) we conclude

A(i(fi) = Alfi fio) = Ay, (i), S((f) = S(fis fio) = Si(fi):

Consequently, using also (15) and (19),
M
15t = A)leduts) - > / ISCHD) = AL o)
M
= 3w / )~ Aug (Ol £)

M
= Z Viez\;gfnon(si’ His G)7

i=1

which together with (17) implies (16).
[l

Now consider the case that all P; are copies of the same problem P, = (F1, G, S1, K1, Ay),
i = M1, VZ':M_I (Z: 1,,M)
Corollary 2.2.
ezvg*non(57 ILL, G) > 2 1 a[vg JIIOH(Sl’ ILLl, G) (21>
M

Proof. Let n; € Ng, "M n; < n and define T = {i: n; < 203 thus |Z| > 4. Hence, for i € Z,
en (1, 11, G) 2 €7, Jnon(Shm,G),
M

so the desired result follows from Lemma 2.1.
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numerical problems. We say that P reduces to P, if the following holds. There are mappings
R:F — F and ¥ : G — G such that

S=WoSoR.

Furthermore, there exist a k € N, mappings 7); : A=A (j=1,...,k) and o : Ax K" = K

such that B _ B B
AR() = o(A (m) ()., (V) (1) (22)

for all f € F and X €EA. Finally, we assume that U : G- Gisa Lipschitz mapping, that is,
there is a constant ¢ > 0 such that

1U(z) = U(y)|a <cllz—yllg forall z,yed.

The Lipschitz constant || V||, is the smallest constant ¢ such that the relation above holds.
We refer to [4], Section 3 for this notion and some background. The following is Proposition 1

of [4].

Proposition 2.3. Suppose that P reduces to P and let set € {det, ran, ran—non, det-—non}.
Then for all n € Ny,
SN, F,G) < (WL (S, F,G).

n

The following result, which is Proposition 2 of [4], concerns additivity properties of the
minimal errors.

Proposition 2.4. Let set € {det,det—non,ran,ran—non}, M € N and let S, : F — G (k =
1,..., M) be mappings. Define S : F — G by S(f) = Sury Se(f) (f € F). Letny,...,nu €
No and put n = Yo" ng. Then

M
EN(SF) < Y es(Se F).

ng
k=1

Propositions 2.3 and 2.4 were proved in [4] for the adaptive setting. This is the technically
involved case. The non-adaptive case is much easier, essentially straight-forward. We omit the
proofs. The next lemma is well-known in IBC, see [11, 15], and specifically [3], Lemma 6 for
statement (i) and [6], Proposition 3.1 for (ii).

Lemma 2.5. Assume that K = K, F is a subset of a linear space X over K, S is the restriction
to F' of a linear operator from X to G, and each N\ € A is the restriction to F' of a linear
mapping from X to K. Let n € N and suppose there are (;)’; C F such that the sets
{ANe A Nyy) #£ 0} (i =1,...,1n) are mutually disjoint. Then the following hold for all
n € Ny with 4n < n:

() If S0 by € F for all sequences (o;)7y € {—1,1}" and p is the distribution of
Zf‘:l eihi, where ¢; are independent Bernoulli random variables with P{e; = 1} = P{e; =
—1} =1/2, then

1
e (S, u, G) > = min {E H 25151/% cZCAL,...,n}k |Z| >n— Qn}.
2 i€ “
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(ii) If anp; € F for all 1 <i<n and o € {—1,1}, and p is the uniform distribution on the
set {a); : 1 <i<n, a€{-1,1}}, then

en®(S, 1, G) > = min [|Si|le.

1
= 91<i<n

Let 6 be the mapping given by the median, that is, if 27 < ... < 27 is the non-decreasing
rearrangement of (z1,...,z,) € R™, then 6(z,...,z,) stands for Zlnt1)/2 if m is odd and

* *
Z 2t Zm 241

5 if m is even. The following is well-known, see, e.g, [2].

Lemma 2.6. Let (y,...,(y be independent, identically distributed real-valued random variables
on a probability space (0,2, P), z € R, e >0, and assume that P{|z — (1| < e} > 3/4. Then

P{|z —0(Ci,...,Cn)| <} >1—e ™8,

As in [7, 9] we will use the randomized norm estimation algorithm from [5]. Let (Q, Q, o)
1

be a probability space and let 1 < v < u < co. For n € N define AP = (A%L)weg by setting

for we Qand f € L,(Q, Q, 0)

n 1/v
AL = (%Z|f<@<w2>>rv> ,

where ¢; are independent )-valued random variables on a probability space (2, %, P) with
distribution p. The following is essentially Proposition 6.3 of [5], for a self-contained proof we
refer to [7].

Proposition 2.7. Let 1 < v < u < oo. Then there is a constant ¢ > 0 such that for all
probability spaces (Q, Q,0), [ € L,(Q,Q,0), andn € N

E [Ifllrv@ae — ANL(H] < enm>W/u=tom12) £l11 0 0.0

3 Algorithms and Upper Bounds for Mean Computation
Let 1 < p,u < oo. Throughout the paper we use the notation
p=min(p,2), u= min(u,2). (23)

We refer to the definition of mean computation V' given in (1). Expressed in the terminology
of (4), we shall study the problem

PN = (BLM (32) K TREAN ¢ AN“N2> ,

where AM™2 is standard information consisting of function values, that is,
Clearly, this problem is linear. Moreover, we have

|1V L (L)) - K| = 1. (25)
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We also use the notation ¥ for the mean operator in L2, Furthermore, we need the operator
of vector valued mean computation SNtV

N2
N o
SNENz L PN (IN2) — L (SN ) (1) = N Y fGg) (i=1,...,N). (26)
j=1

Given n € N, we define for ™2 a non-adaptive randomized algorithm A = (A%%L)weﬂ
with (Q,%, ) a suitable probability space as follows. Let (; (I = 1,...,n) be independent
uniformly distributed on Z[1, N1] x Z[1, N5] random variables, defined on (€2, %, 11). We put for
J e I (L),

AR = 3 F(Gw))

Note that the constants in the subsequent statements and proofs are independent of the pa-
rameters n, Ni,Ny, and m. This is also made clear by the order of quantifiers in the respective
statements.

Proposition 3.1. Let 1 < p,u < 0o and recall (23). Then there is a constant ¢ > 0 such that
for all n, Ny, N, € N and f € L) (L1?)

EAD)(f) =1V f,  card(AD)) = n, (27)
and for p > u
(BIINNef = AZ(AI)TT < emin(Ny/ P g/, (28)
while for p < u
(BN f — AR (D) < cmin(NP o1V 1) (29)

Proof. Relation (27) is obvious. To show (28) and (29), we use the factorizations

VN N (LNe) L N () T2y ey T (30)
VN N (N L N (pNey ey NNy IO e (31)
with Ji, J; the identical embeddings. Then ||J;]| = 1,
1/u—1/p
AR AR (p>u) (32)
|2l = 1, 1]l = N7 (p < ). (33)

Furthermore, the well-known estimate of the Monte Carlo method for LY (LY2) = LNz gives

sup (B[N f — AD ()Y < en Y (w € {a,p}). (34)

f€B NiNy
w

Now (30)—(32) and (34) imply (28), while (30), (31), (33), and (34) yield (29).
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Remark 3.2. Obviously, for p # u the minimum in (28) is attained at the first term iff n > Ny,
and in (29) iff n > Nj.

Now we define an adaptive randomized algorithm for the case 1 < p < 2 < u < co. Let
fe Li)\[l(Lq]LVQ) and set f; = (f(i ])) . Let m,n € N, n > Ny, and let

{@k 1<J<[N£—‘,1§k§m}, g 1<sisN,1<j<n}
1

be independent random variables on a probability space (€2, %, P) uniformly distributed over
{1,..., Na}. We will assume that (Q,X,P) = (24,31, P1) x (£9,35,P5), that the () are
defined on (£21,%4,Py), and the (n;;) on (9, %2,P5). Let E,[E;,E; denote the expectations
with respect to the corresponding probability S aces.

We start by applying m times algorithm A fn/ny] O estimate | fi . Then we compute the

HLNZ
2
median of the results, i.e., we put for w; € 21, 1 <i < N, 1 <k <m

_1 1/2
n ~ m
ak(w) = ( [ﬁj > |fi(£jk(w1))’2> s agwn) = 0((aiw(wi))ity)-
<]
Next we approximate I™2 f; for each i and wy € 5 by

ni (w1

bi(wi,ws) = fi(mij(w2)) (35)
where
c N
7] it ) < N'Y e
1 p—
ma =9, - (36)
an o B 3
A ~p—‘ if  a;(w)? > Nj 1 Zal(wl)p
L =1 =1
Finally we define the output Agm,w( f) €K as
1 &
Agv)n,w(f) = b(wr,wy) = N, Z bi(w1, wa). (37)
L=

Proposition 3.3. Let 1 < p <2 < u < oo. Then there exist constants c1,co > 0 such that the
following hold for all m,n, N1, Ny € N with n > Ny and f € LY (LY?):

card(An?’ w) < 6mn (38)
and for m > c;log(Ny + 1)

,1M,W

1/2 —up —1+1/u 4=
(E\INI’NQf—A(g) (f)’Q) / < CQ(Nll/p Yy =14+1/u 4 1/2)HfHL;V1(LiVQ)- (39)
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Proof. The proof is a modification of the proof of Proposition 4.3 in [7]. A similar reasoning
has been used for Proposition 2 of [9]. We have 1 < n; <n and

n N n M an
d(AB) Y =mN; | — . < N, | — d
card(A;), ) = mN N +Zn < (m+1)N N +Z N o

i=1

hence (38). By definition (36)

ni(w,) > [—W (1<i<N). (40)

(EQ ’(SNI,NQf) (4) bi(w17w2)‘2> 1/2 _ <E2 2) s

J=
< niw) ) fill e (LSS Nywr € i), (41)

By (35)

n;(w1)
1= — S fis(en)
1

n;i(wr)

Moreover, for fixed w; € ; the random variables b;(wy, ws) are independent and
]E2 bi(Wb w?) = (SNl’NQf) (Z)v

therefore by (37)

1/2

(]Ez { (1M F) — b(wr, w2)’2>

1 X

7 2 (M) (0) = bulen, w))

=1

_ N (Nil iEQ ‘((SNl,Ngf)@) — bi(wl,WQ))

We set ¢; = 16/loge, and assume m > ¢; log(N; + 1), hence e™™/8 < (N; 4+ 1)72. Let ¢(2)
denote the constant from Proposition 2.7, which implies for fixed f € Lév ! (LIUVQ)

o\ (/21w
§4C(2)<E) 1 fill v Z 0

o\ 1/2

1/2
2) e (42)

w

Py {M €Qy: ’HszLé\’z — ai(wr)

so by Lemma 2.6

—(1/2—1/u)
- n _
R{meﬂahmmp—mwnsmmﬁﬁ) \mmp}zrwm+m2.
1 L

Setting

n

—(1/2—1/u)
s%&(—) 1l ﬂSiSNﬁ},@$

Qo= {w1 €y ‘”fiHLN? — a;(w1) N
2 1
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we arrive at
Py(Qu0) > 1— (N +1)7"

Fix wy € Q9. Then by (43) for all 4

ai(wi) < || fill e

Consequently,

1 & ¢ &

— 5 ()P < = AT P

Ny 2wl < 3 Sl = AV
Set

I{wn) = {1 <i < Nyt ai(w) < Hf%!LNz }’

then from (43)

n \ (/21w |
Il < (57 ) Iflle (€ (),
1

which together with (40) and (41) gives
—141/u

2\ 1/2 n
<E2 ‘(SN17N2f) (Z) — bi(wl,a&)‘ > < C(E) ||f2||Lll:IQ (’l S I(CL)1>>
Now let i & I(wy), thus

£l
5
If a” < Ny7YSOMaP, then by (36), (41), (45), and (47)

di(wl) >

N N , 9\ 1/2 n\ V2 n\ 12 ZN_11 &P
<E2 }(S " Qf)(z) _bi<wlaw2)| ) < 2(%) a; < 2(%) (T

0\ L2
< o(5) My
Similarly, if a? > Ny Zl L@y, then
: 2\ 1/2 an O\ V2
<]E2 |<SN1,N2f> (Z) — bi(wlaw2)| ) < 2( N ~p) a;
1=1 %

-1/2 N1 ~py 1/2 -1/2
= 25" 2L B ) gt () g
N1 N1 - ¢ Nl LIJJVI(LiVQ).

From (42), (45), (46), (48), and (49) we obtain
(E2 |([N1,N2f) _ b(wl,w2)|2)l/2

1/2
2
S (N ZE ) (S22 f) ()—bi(wl,wz)) )
1
—141/u N 1/2
< ave(2) A ) e
= A Ny e i L (22?)
1 N 1/2
il 52-p —1/2 £1|P/2
*(NZ > R

11

(45)

) 1/p

(48)

(49)
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Observe that by Hoélder’s inequality

IR 1/2 Ny 1/p
N1/ 1/p—1/2

(EZuﬁung) < N ( anm) = N

i=1 i—1

| M 1/2 | M o

~2-p =D 1-p/2
— a; < — ak <
(2a7) < (%) <1y

i=1

Inserting this into (50) gives
NN o\ 1/2
(EQ |(I b 2f) — b(wl,w2)| )
< C(Nll/l?—l/un—lﬂ/u + n—1/2> ||f||L$71 (LiVQ) (w1 € Q). (50)

Finally we estimate the error on (£2; \ ;) % Q9. For w; € € we conclude from (40)—(42)

NN o 1/2
<E2 I(] b 2f) — b(wl,uJQ)‘ )
1 Ny 1/2 Ny 1/2
< ML) (=) < (= SR
- N Ny = Ly - Ny = L

N1 1/p
1
1/p-1/2_— 1/p-1/2_—
< N1/p /2,,-1/2 <ﬁlz||fl||iff?> :Nl/p 2y UQHf”L,],Vl(LfQ)'
i=1

Consequently, using also (44),

1/2
/ |[TV0Ne f— p(w)|*dP(w)
(21\21,0)x Q2

< P\ Q1,0)1/2N11/p_1/2n_1/2||f||LéV1 (£22)

_ 1/p—1/2 _— _
< (Nl—l-l) 1/2N1/P /n 1/2Hf”L£71(Lﬁ[2) <n 1/2HfHLéV1(Lﬁ/2)>

which together with (50) proves (39).

4 Lower Bounds and Complexity

Proposition 4.1. Let 1 < p,u < oo. Then there are constants 0 < cg < 1, ¢1_4 > 0 such that

for each Ny, Ny € N there exist probability measures ”S\}B,Nw . 7'“5\1/%3,% with finite support in

BLIJ]\,1 (LiVZ) such that for n € N with n < ¢gN1 Ny

enE (1N Nm&l N = aNPiNye (51)
e (I 7:uN1N2) > (N No) /2 (52)
BN i) ) > NN (53)
e non([N1N2>ﬂN1N2) > C4N11/p71N271/2. (54)
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Proof. We set ¢y = % and let n € N be such that

N1 N,
21

(55)
To prove (51), we define functions v;; € Lé\] ! (Lfy?) by
Wig(s,t) = NYPNy ey (i € Z[1, i), j € Z[1, Ny)),

with (e;;) the unit vectors in KM >N and let u( ) ~, be the uniform distribution on the set

{Oéwiji 7;:1,...,N1,j:1,...,N2,Oé::iil}CBLévl(Lgb).

Recall that by (55), 4n < N;Ns, so from Lemma 2.5(ii) a we conclude

lNl/pleflJrl/u

1
eflvg(INl’NQ?M(l) ) > §‘IN1’N21/11,1‘:2 1 2 ;

N1,N2
thus (51).
To show the second lower bound, (52), let (5”)5“1]}72 1 be independent symmetric Bernoulli
random variables and let u n, be the distribution of  7; 11];]2 | €ij€ij- Since by (55), 4n < Ny Ny,

we can apply Lemma 2.5. So let K be any subset of {(,7) : 1 <i < Nj, 1 < j < Ny} with
|IC| > N1 Ny — 2n. Then || > N1Ny/2 and we obtain from Khintchine’s inequality,

E| > eyIVMe;)| = ) = = Kl > ¢(NyNy)~V/2
ij €ij N1N2 P ig| = N1N2 = 14V2 )
(3,7)EK (i,5)EK
and therefore from Lemma 2.5 (i),
avg( TN1,Na  (2) 1 : Ni,N. —1/2
€n g([ ' 27MN1,N2) 2 5 ‘K‘Z%lj\%_Qn Z 51][ " Qwij‘ > C(NlNQ) / :

(3,5)eK

This proves (52).
Next we turn to (54), where we use Corollary 2.2 with

M:Nl, FIZLgb, SlleQ, GlzKlzK, A1:{5j2 1§j§NQ}, (56)
fio=0 (i=1,...,N), (57)

where d;(g) = g(j). Then obviously (12) is satisfied and

Ny

F=][L.=L)"(LY?), G=K, 8§=NI"" (58)
=1

K=K, A=A""={5,:1<i<N,1<35< N} (59)

We define
;= NPe; e LN (j=1,...,Ny). (60)
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Let (e )N %, be independent symmetric Bernoulli random variables let 111 be the distribution of

Z 1 €59, and denote the resulting from (15) measure by ,u N1 . Observe that by (60) ,ugvl) No
is supported by B 3 (102) Now (21) and (9) yield

avg—non 4 —1 _avg-non 4 1 avg-—non
eng (INI’NQMHEVE,NQ) = N 1€ng <S7ILL§\737N2) - §N1 1€{gJ ([N27M17K)
Ny
1
> h 1eavg ([N27M15K)- (61)
2 {NlJ

By (55) we have 4 L ?J < Ny, therefore Lemma 2.5(i) and Khintchine’s inequality give

1 . N
5 min {E ) .GZI&I 2,

> NPV | > eNYPNG,

(IN27M17K)

v

2
LT C {1, Ny, \I|>N2—2{ ”J}
Ny

avg
€ 2n
Ny

Inserting this into (61) yields (54).
Finally we prove (53). For this purpose we can assume Ny > 16, because for Ny < 16
relation (53) follows from (52). We define

SN =,
vilt) _{ 0 otherwise. (62)

Let p1 be the uniform distribution on {£1; : 1 < j < No} C LY. Then we set MS?’E,NQ = v,

Due to (62) this measure has its support in B, ,, (L2 First we need an auxiliary estimate for
P u

the operator of vector-valued mean computation SN:N2 : LV (LN2) — LI see (26). With the

choice (56)—(57) we are in the setting of Corollary 2.4 of [7] and (58) and (59) hold, except that
now G = LY and S = SNN2 Tt follows that

1
enB(SMN iy vy L) 2 €T (1 ). (63)
4[]
We have A
n
4| — 1 < Ns. 04
M F1<N, (64)

Indeed, this is clear for n < Nj, since we assumed Ny > 16, while for n > N; assumption (55)
implies

By Lemma 2.5(ii) with 7 = N, taking into account (64),

2 Y= g

Ny

which together with (63) gives

1 4/
SN ) ey ) 2 N, (65)
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Now let A = ((Lr)2y, (T)520, (0k)72,) be a deterministic algorithm for (scalar-valued)
mean computation V2 with
card(A, ug\A,‘l)’M) <n. (66)

Let f € supp(,ug‘}f, n,)» Which means that

N1
. 1/u
F="a(i)Ny e,
i=1

where ay : Z[1,N,] — {=1,+1} and j; : Z[1,N] — Z[1,N,y]. Let Aiy,..., Ayyp),r be the
sequence of information functionals called by A at input f and define

Iy ={i € Z[L, M) = Gij0) € {Angs -5 Anipys -

Based on A we define an algorithm A = ((Lz)52,, (76)7%0, (§1)32,) for vector valued mean
computation SMN2 : LN (LA2) — L™ considered above, that is, the information and stopping

mappings (L) and (1) are the same, just the output mappings @ : KF — LJIV1 are defined
differently as follows. Let Bg = 0 € LY. For k > 1 let (ay,...,a;) € K* be given, let

M=Ly, Xo=Lsy(ar), ..., Me=Lglar,...,a5-1),

and assume that @p_1(ay,...,ap_y) € LY has already been defined. Let i,5 be such that
A = 0;; . Then we set

@k(a ak) — { @k—l(al, R ,(Zk—l) + N{lakei if )\k € {)\1, .. '7)\19—1}
PR @k*l(ala ... aakfl) lf )\k c {)\1, . .,)\k,l}.

It is readily checked by induction that for f € supp(,uséf’ Ny)

G = { g et e
while for all 4
(SMA2f) (1) = Nyt f(3,45(1)),

and therefore
1,Na It o — 1/u—1
ISNN2 £ — A(f) e = NN TN = (). (67)

Clearly, we have

card(A, f) = card(A, f) (f € LY (L)?).
Therefore, combining (65), (66), and (67) we conclude

4 Nl
/LNI(LNQ)(J\G - |If|)du§V1)7N2(f) > = (68)
Let .
Fy = {f € supp(ﬂg\?,NQ) DNy — || > Té}’
then (68) implies
1
4
“EVB,NQ(FO) > — (69)

16
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We introduce an equivalence relation on supp(,ugéz, n,) as follows: f ~ g iff they are non-zero at

the same places and their values coincide in all rows ¢ € Iy, or equivalently,

feg Mt gy =ggand fi, 55 (1) = g(i,jg (i) (i € Iy). (70)

It is readily checked by induction that for f ~ ¢ the action of algorithm A is the same on both
f and g, meaning that for 1 < k < n(f)

Mot = Megs Mef(f) = A s(9),

and therefore also
n(f)=nlg), Ir=1, A(f)=A(9),

which shows, in particular, that ~ is indeed an equivalence relation. Moreover, f ~ g and
f € F, implies g € Fy. Let [f] denote the equivalence class of f € Fy and [Fy] the set of all
equivalence classes of elements of F. Now we estimate

/LN1 (LY2) 7005 = AN, ()

> NN — A R (D) = @No) TN YT S T 1NN — A(f)

feFy [f1€[Fo] g€(f]

= 2N Z‘(MNQ)* D> gl dp(@) + (NiN2) ™) f (i) (f)‘
[f1€[Fo] g€lf] i€Z[1,N1\I¢ i€l

= (2N Y Z' (MiN2) ™ > g, 45 (0) 4+ (NiNo) ™D F (G, 5 (8)) (f)‘
[fI€[Fo] g€lf] i€Z[1,N1\I ¢ i€ly

> (NN TN ™ ST ST ST G, g(0) (71)

[fI€[Fo] g€lf] " i€Z[1,N1]\If
- NN S S S ),
[f1€[Fo] g€lf] " i€Z[L,N1]\I

where we used a standard symmetry argument to reach (71). Next observe that according to
(70) if g runs through [f], then (ay(4))iczp Nz, Tuns through all possible combinations of +1
and —1. Therefore Khintchine’s inequality gives

Lo P = A0 a8 (1
Lyt (Lu?)

> eNTINTN RN ST 120 N I
[fl1€[Fo]

> Ny N T NGV ST (I = ey AN 2N TN |
[fl€[Fo]

= el (RN AN e

where we used (69) in the last relation. This proves (53).
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Lemma 4.2. Let 1 < M, < N, (t =1,2). Then for set € {det, det—non, ran, ran-non}
ezet(IMhM27 BL;VIl(LuMQ)) < 4€Zet(]N17N27 BLI],Vl(Lny))'

Proof. We define M, disjoint blocks of {1,..., N,} by setting

P e LA PR LA | R

We have
N, N, N,
2M Lk"—‘DL1|_ M SM
With
e ML‘DLJ’
it follows that
1<y <2

Now we let 1y € Lévl(LiV?) be defined for 1 < k < M; and 1 <1 < M, as

1 if s€ Dy and t€ Dyy,

V(s t) = { 0

otherwise
and R : L;WI(L{V?) — Lévl(LJu%) by
My Mo
Rf=21""%"" Y "3 fk, Dy
k=1 =1

It follows from (72) that for f € L) (L}")

1/p

AN A o
_ A/ tu [ il u
IR0 gy N Ve leZ:;(Nz;\f(k,m \D2J|> | D1k
1/p

1 Mg e o
= M; (E;If(k,l)l“) = ||f||L£41(Liwz)

(with the obvious modifications if p = co and/or u = c0) and

D
) s Z' ”'kaHDzA

= 711/p721/uN1 lNz 1|D1,1||D2,1|M1M2 MM 711/p_1721/u_1IM1’M2f-

Next we show that

(BL;,VIl (Lﬁ@) , K7 ]M1,M2, K, AM1,M2> reduces to (-BL]JDV1 (LuN2

so that we can apply Proposition 2.3 (with k = 1). We define two mappings

e ANV MM ANEN R K

) K I K AN

17

(72)

(73)
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as follows. Let (i,7) € Z[1, N1] x Z[1, N3] and a € K. If there is a (k,l) € Z[1, My] x Z[1, M,)]
such that (i,j) € Dy x Dgy, then we put 1(d;;) = o and (05, a) = Vll/p%l/ua. Hence (74)
gives for f € L) (L}"?)

8 (RF) = "0 0ka(f) = 0(655, 81a(f)) = 0(J53, (1(855)) (f))- (77)

If there is no (k,l) € Z[1, M;] x Z[1, Ms] with (i,j) € Dy x Dy, then we set n(d;;) = 011 and
0(0ij,a) = 0. Here (74) implies that for f e L) (LY?)

6i(R(f)) = 0 = 0(0i5,611(f)) = 0(di, 0ua(f)),

which together with (77) shows that (22) is satisfied. Furthermore, by (75)

R<BL{¥’1 (L?f?)) < B (z2)
and with ¥ : K — K defined by Va = 711_1/p721_1/ua we have by (76)
UM R = MM
Now Proposition 2.3 and (73) yield that for all n € Ny

set [ 7M1, M> 1-1/p_1-1/u_set/ yNi,No set [ 7N1,No
€n (-[ 7BL£[1(L£/[2)) < T Yo €n (-[ ’BLQTI < 46n (-[ ’BLQTI

(Lff?ﬂ (Lff?ﬂ'

]

Corollary 4.3. Let 1 < p,u < oo and let p,u be given by (23) and let 0 < ¢y < 1 be the
constant from Proposition 4.1. There exist constants c1_5 > 0 such that for each n, Ny, Ny € N,
with

n < 62—0N1N2 (78)

we have
ern([NN2 BLNI(LN2)> > C1N21/u_1/ﬁnl/ﬁ_1 +oan? (n > Ny) (79)
eI B ) 2 NPT T en T (0> ) (80)
e (NN B ) > e NMP2=102 (s ) (81)
et (IMN B v ) 2 ent/PTE (0 < V) (82)
e (I, BLNl(LiV?)) > on'/" (n < Ny). (83)

Proof. For all lower bounds we use the relations between average case and randomized setting
(10)—(11). First we show (79). We put

2n
M, = 1 84
= 5] (54)
consequently
n < 2MN,, (85)

2
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and, using (78),

M, < 2n

+1<N1+1,
CoLV2

hence
M, < Nj.

Now assume n > Ny, then the first relation of (86) implies

2n + CoNg < (Co + 2)n

M, <
b= CON2 - CON2

By (87) we can apply Lemma 4.2 with My = Ny, giving

1
> —eran(]Ml’NQ, BLMl
P

eiLan(INl’N27BL;V1(LiV2)> - 4 n

(LfP))'

Taking into account (85), we obtain from (51)—(53) of Proposition 4.1 and (88)

ern( M2 BL;)M1 (Lfﬁ))
> L ma (eEIN ) ), P ) ) eEIN ) )
> e MPTINGY T G o(MyNo) Y2 4 e AN
> chl/ﬁ_lNZI/u_l + C(MlNg)_1/2 > CNzl/u—l/’ﬁnl/ﬁ—l Len 2,

which together with (89) proves (79).
Next we verify (80) and (81), where we define (symmetrically to the above)

2
M2:{ "J+1,

CoN1
which analogously implies

n < CEONlMQ
My < N,

Suppose that n > N, then according to (90)

(co+ 2)n'

M.
2 C()Nl

Based on (92), we apply Lemma 4.2 with M; = N; and get
1
€gm(INl’N2, BLgl(Li\b)) > Zef@an(INl’M27 BLgl(LiMz))'
Moreover, by (91), (51)—(53), and (93),

ran/ 7N1,Mas
€n (I ’BLévl(Lﬁ/IQ))

(3)

1 av; 3
(1) g(INLMZ : luNl,Mz))

1
avg ¢ tN1,M2
5 max <62n (] 7/“'LN1,M2)’ 6277,

chl/ﬁflM;/ufl + C(N1M2)—1/2 > chl/ﬁfl/unl/u—l + C?’L_l/2,

(2) avg ¢ rN1,M>
’ luNl,MQ)7 6271 ([

>
>

19

(89)

(90)

(91)
(92)

(93)
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which together with (94) shows (80). Furthermore, with Lemma 4.2 and (54),

n 4 n
> chl/p_lMQ_I/Q > CNll/p—1/2n—1/27

1 1 _
eranfnon<]N1,N2’ BLévl (LZYZ)) Z _eranfnon(INl,ng BLZIJ\H (Lﬁ@)) 2 ge;\rzlg non(INl,Mz 7 N%E,M2>

establishing (81).
If n < Ny, we let My be defined by (90), thus 1 < M, < {%J + 1. Moreover, (91) and (92)
are fulfilled. Hence by Lemma 4.2

1 ran
2 et (I B ).

e’flan([NLNQ?BLg’l(Lﬁ’Q)) — 4 n

Now (92) together with the already shown relation (79) gives for n > M,
ran 1/u—1/p p— p—
(I B ) 2 M,y TPl > et/
consequently,
e;an(]Nl’NQ,BL;vl(Lin)) > ent/PL

while for n < M the result follows by monotonicity of the e** from n = Ms, proving (82).
If n < Ny, we let M; be defined by (84), hence 1 < M; < L%J + 1 and (85) and (87) are
satisfied. Lemma 4.2 and (80) imply for n > M,

1 51 /u _ _ .
ezan(INl,NQ’BLgl(Lﬁb)) Z Zezan(IM1’N27BLéVIl(L52)) Z CQMll/p 1/ nl/u 1 +en 1/2 2 Cnl/u 1'
Again, for n < M; the results follows by monotonicity, verifying (83).
O

Theorem 4.4. Let 1 < p,u < oo and let p,u be given by (23). Then there exists constants
0<co<1,ci_13 >0, such that for n, N1, Ny € N with n < cgIN1 Ny the following hold:
If p > u, then

¢ min(N;/ﬂ_l/ﬁn_Hl/ﬁ,Tfl_H/ﬂ) < 6;?11(_,N1,N27 BLéVl (L{ﬁ)) < eflan—non(]Nl,NQ? BLf,Vl (LLV?))
< o mm(N;/ﬂfl/ﬁanl/ﬁ, L, (95)
If p <u <2, then
o min(Nll/pfl/unflJrl/u’n*lJrl/p) < e;an([NLNQ,BLéVl (Lfﬁ)) < e;anfnon<IN1,N2’BLéVl (LLV?))
< e min(Nll/p—l/un—1+1/u’ n—l-f—l/p)‘ (96)

If2 < p<u, then

c5n_1/2 S e;an(IN17N27B Ny (0N ) S ezan—non(]Nl,Ng’B Ny (N ) S cﬁn_l/Q. (97)
£y (£2) 1y ()

L Ly
If p<2<wuandn > Ny, then

NP 2 < (T B )
P u

< NPTV e (og (N} 4+ 1)) 7MY 4 cgn ™2 (log(Ny + 1))/2 (98)
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and

CgNll/p—l/Qn—l/Q S e:lan—non<]N1,N27 BLN1 (LN2)) S ClONll/p_l/2n_1/2- (99)
P u

If p <2 <wuandn < Ny, then

CllnflJrl/p < e;an<IN1,N27BLéVl( uNg)) < ezanfnon(INl,N27BL;Vl (LLVQ)) < CIanlJrl/p. (10())

L
In the deterministic setting we have for 1 < p,u < oo

13 < eiet(INLNQ’BLNl (LN2)) < egetfnon([Nl,N%BLNl (LNZ)) <1. (101)

Proof. The upper bound of (101) is a trivial consequence of (25). All other upper bounds

except that of (98) follow from (6) and Proposition 3.1, since the involved algorithm A is
non-adaptive. To prove (98) we assume n > N;. First we suppose that

n < 6N; [C(].) 10g(N1 + 1)—‘ ,
where ¢(1) stands for the constant ¢; from Proposition 3.3. Then (99) implies

B v,

1)) S eI By (4ay)

1/2—1/u
< N e ()T o gy 1)
1
(

which gives the upper bound of (98). Now assume
n > 6N [¢(1)log(Ny +1)]. (102)

We set

m = [e(1)log(Ny +1)], 7= {6 [e(1) log(N, + 1)1J ’

which implies 7 > Ny, so that we can use Proposition 3.3 with 7 instead of n. Hence by (38)
card(4;] ) < 6mi < n,
and therefore

ran 1/p—1/u~— u ~_
I B () < c(Nl/p fup =11y 1/2>. (103)

From (102) we obtain, using |a| > a/2 for a > 1,

12 (1) Tog(M: + 1)] = 12(e(1) + 1) log(M; + 1)’

n >

which combined with (103) completes the proof of the upper bound in (98).

Now we prove the lower bounds. We start with the case p > u, thus with (95). Relation
(83) gives the lower bound for n < Ny. The case n > N follows from (79). Indeed, if u > 2,
we have p = u = 2 and the second term on the right-hand side of (79) gives the lower bound
of (95), while for u < 2 the first term yields the desired result.
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Next suppose that p < u. The lower bound of (96) follows from (80) and (82), while that
of (97) is a consequence of (79) and (83) (since 1/u — 1 > —1/2 for all v). Furthermore, (80)
implies the lower bound in (98), while (81) implies that of (99), and (82) yields that of (100).
Finally, in the deterministic setting we use B 0 (122) c B, M (2) hence
det N1,N2
€n ([ y BLil (

Lé?)) < edet (INI,NQ,BL;VI (LUNQ)). (104)

On the other hand, it is well-known that

e;llet (IN17N2’ BL]OVol( ]Ovoz)) = eget (_[NINQ, BL£1N2> Z C,

L
which together with (104) and (5) gives (101).
[

We want to estimate the order of the largest gap between non-adaptive and adaptive minimal
errors among the family of studied integration problems. For this purpose we carry out an
analysis similar to that in [7], see Corollary 4.6 there. Let p < 2 < u. Consider the region
Ny < n < ¢(0)Ny Ny, with 0 < ¢(0) < 1 standing for the constant ¢y from Theorem 4.4 and
define

n

ran( JN1,N:
e, (I 1 Q,BL;vl

e (I By o)
v(p,u,n, N1, Np) = L (L)

(LLVQ))

Y(p,u,n) = sup v(p, u,n, N1, Np).
Nl,NQZ Ny STL<C(O)N1N2

Corollary 4.5. Let 1 < p <2 <u < o00. Then there are constants cy,co > 0 such that for all

n €N
(3-3)(3-%) (5-3)(3-%)

<v(p,u,n) < con B

Sl
2l o=
gl
2= o
Sl

=3 | (ST
e NI

c1(log(n + 1))V 1n (105)

The exponent of n attains its mazximal value 1/4 iff p = 1, u = oo. In this case the following
holds. For any constants cs, ¢4 with 0(0)1/2 < c3 < ¢4 there are constant cs, cg > 0 such that for
all n € N with n > ¢ and all Ny, Ny € [csn'/?, cyn'/?]

e;an—non(]Nl,N27B Ny, Ny )
cs(log(n 4+ 1))~ tnl/4 < Ly (L)

1/4
< 6§Lan(IN1’N2,BLN1 < cgn ", (106)
1

(Lfi?))

Proof. We will estimate y(p,u,n)~*. By (98) and (99) of Theorem 4.4 there are constants
1,2 > 0 such that for n, Ny, Ny € N with Ny < n < ¢(0)N; N,

1/u—1/2 -~
Clmax((%) 7N11/2 1/1’) SIY(p7QJn7N17N2)_1

1/u—1/2 _

< e 2) " gy 4 14 N g 1)V (1o
1

and therefore

. n \ 1/u—1/2
c; min max| (—
N1:1<N1<n Ny

1/u—1/2
< o min <( " > (log(N, + 1))=Y/

N1,N2: N1<n<c(0) N1 N2 N1

+NE VP (1og(Ny + 1))1/2). (108)
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Define x( by

()" (109)
then L

ro=ni b, e[l nl, (110)
and

. (
min max <ﬁ)l/ 1/2 LU2=1p\ = 2 T .
z€[1,n] T ’ 0 ’

which together with the lower bound in (108) shows the upper bound in (105).
Exactly as in [7] we define

N =[z0], No= Lc((;ﬂ;on ¥,

and conclude

n_._n <N, < 2n < 2n
c(0)N1 ~ ¢(0)xg 27 ¢(0)xo — ¢(0)”

Ni <n, xy< Ny <2z,

in particular we have Ny < n < ¢(0)N;No. Consequently, the upper bound of (108) together
with (109) and (110) gives

v(p,q,n)7"
1/u—1/2
n fu=t/ —1_\1-1/u 1/2-1/p -1,\1/2
< ¢ 5 (log(2x¢ + 2¢(0)""n) + z, (log(2x¢ + 2¢(0)""n)
Lo
_(-1)0-4)
S en BE (ostn 1)

implying the lower bound of (105).
The exponent of the gap between non-adaption and adaption satisfies

2
G-36G-b _ (-3+3-4) 14

= <

— - 4 (1 _ 1) 4 -
p u

It follows that the exponent attains the maximal value 1/4 iff p = 1, u = co. With this choice
and Ni(n), Na(n) as assumed, relation (106) is a direct consequence of (107).

S| =

o |

1
2
1
p

]

5 Passing from finite to infinite dimensional problems

So far we produced integration problems with suitable gaps between adaptive and non-adaptive
randomized n-th minimal errors for each n separately. This raises the question if there are
infinite dimensional examples with respective gaps for all n simultaneously. In this section
we use infinite direct sums of finite dimensional spaces to produce such examples. We study
various aspects of the adaption problem in these spaces including operators represented as an
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infinite sum of finite dimensional operators and similarly, operators with a respective diagonal
representation.
Let X (k € Ny) be Banach spaces, 1 < p; < oo, and let

— (@Xk) (111)

p1

be the space of tuples = ()72, with z; € X}, endowed with the norm

o 1/p1
<Z ka\g’;k) if p; < o0
k=0

]l = |l ll,, = .
sup |[lzk[x, if pr =00
0<k<o0
We define the following mappings
Jo: Xe = X, Jewp = (6F2)5°, (112)
ka P X = Xy, Qk((Iz)Eﬁo) = T (113)
where 6% stands for the Kronecker symbol. Furthermore, let () # A;, C X} and
A= J@r(Ar), where 0 Ay — X*, (Dp(\))(x) = Ae(a). (115)
k=0

5.1 Infinite sum problems

Let G be a Banach space and consider the problems P, = (Bx,, G, Sk, K, Ax), where X, Ay
are as above, while Sy € L(Xy,G) (k € Ny). We define the sum problem P = (By, G, S, K, A)
by

S X =G, S((x)) ZSk:ck, (116)

with X and A as given in (111) and (115). A sufficient condition for S being well-defined and
bounded is

ISk Nle,, < o0, (117)
where 1/pt =1 — 1/p;. Indeed,
IS| < sup ISk(zx) |l = sup sup {|:Sk ()]
Izl ey, < 1% 16 e, <1 g o]l <ol
= sup Z 1Sk [10] = 1C[1SK[DIle,, < oo (118)
1B )lley, <1 =
In a similar way it follows from (117) that
k1
5= >R < ISl € B (119
=0 '

Moreover, if G = K, then equality holds in the first relation of (118) and in (119).
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Lemma 5.1. Let set € {det,det—non, ran,ran-non} and assume that (117) holds. Then for
n € Ny
en"(Sk: Bx,, G) < €7(S, Bx, G). (120)

Moreover, for ki € Ny, (ni)fL, C Ny, and n defined by n = ZZ;O ng

ey’ (S, Bx,G) < }S SZP"?HLXG_{_ZQS@ Sks B, &) (121)

IN

| (1SklD7 k1+1||g +Z “(Sk, Bx, G). (122)

Proof. To prove (120) we show that P reduces to P. We have
Fix any Ay o € Ay and define n; : A = Ay, 0: A x K — K by setting for A € A and a € K

Ak if A= ®p(Ag) for some N\, € Ay
Ao  otherwise,
a
0

n = {

o(A\a) = {

We show that for all A € A and all x; € Bx,
A(Jk(@r)) = o(A, (m(A))(@k)). (124)
If A = ®p(\g) for some A\ € Oy(Ay), then
A(Jk(zr)) = Ai(zr) = o(X, (i) = o(A, (m(N))(@))-
On the other hand, if A € ®y(Ag), thus A = &;()\)) for some A\, € A; with [ # k, we have
AJk(zr)) = 21(N) (Jk(2x)) = 0 = 0(A, Aro(@r)) = o(A, (11 (N)) (k)

This shows (124). Based on (123) and (124) we conclude from Proposition 2.3

if A€ @A)
if A Dp(Ag).

e (S, Bx,,G) < (S, By, G).
Next we turn to (121) and show that (Bx, G, SPg, K, A) reduces to Py. Here we have
SP, = SkQr, Qr(Bx) = Bx,. (125)

Set
m=br: A=A, 0: M xXK—=K, oA\,a)=a

It follows that for A\, € Ay and © = (z4) € X

Me(@Qrr) = A(mr) = 0( Ak, Ae(zr)) = 0k, (Pr(Ar)) (7))
o(Ak; (m(Ax))(2)). (126)
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Using Proposition 2.3 again we obtain from (125) and (126)
efft(SPk,BX,G) S €Zet(5k,BXk,G). (127)

Consequently, now using Proposition 2.4 and (127),

k1 k1
ex'(S,Bx,G) < ||S—SZP;€HL(X7G)+e§ft(ZSPk,BX,G>

k=0 k=0
k‘l k‘l

< |Is=5Y Pellpxa + > " ee(SPy, Bx,G)
k=0 k=0
kl kl

< ”S - SZ PkHL(X,G) + Zeff;(Sk, Bx,, Gy,
k=0 k=0

which is (121), and combined with (119) gives (122).
[

We apply Lemma 5.1 to the following situation. Let 1 < p,u < 0o, « € R, a > 1, and for
k € Ny
Ne=2" Xpe=LYL)¥), G=K, Gp=2"" e
and Py, = (BL;V’“(LLV’“)’ K, 270k [NeNe K ANeNe) where AN is standard information, see (24).

Thus we consider the problem defined by (111), (115), and (116)

k=0

P1 k=0

00 oo Ny,
S=T:X =K, I(fi)izg=Y 27 VoM f =3 27@2E N " (i j) e K.
k=0 k=0

ij=1
Since |[I™Nk 2 Lk (LK) — K| = 1, we get from (25), (117), and the assumption a > 1,

I X = K[| = [ ), < oo
and from (119) for k; € Ny
k1
HI — ZIPk = H(2iak||INk’Nk||)Zo=k1+1H€p»{ < 2ok (128)
=0

for some constant ¢ > 0. Now we transfer Theorem 4.4 to this infinite dimensional situation.
We only consider the case 1 < p < 2 < u < 00, the other cases can be treated analogously.

Proposition 5.2. Let 1 <p <2 <u < oo and a > 1. Then there are constants c1_¢ > 0 and
ng € N such that for n > ng
Cln—a/2+1/(2p)+1/(2u)—1 +Cln—a/2—1/2 < ezan(j7 BX) < an_a/2+1/(2p)+l/(2u)_l(1Og(n—f- 1))1—1/u

_I_CQn—a/Q—l/Q(log(n + 1))1/2

—a/2+1/(2p)—-3/4

IN

eranfnon(l’ BX) < C4n—a/2+1/(2p)—3/4

c3n n

C5n—a/2 < eillet([’ BX) < egetfnon(j’ BX) < 067’L—a/2.
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Proof. Let 0 < ¢(0) < 1 be the constant ¢y from Theorem 4.4. First we show the lower bounds.
Set
(1) = [~ logy c(0)] +1> 2, (129)

thus ¢(0) > 27+, For any k € N, with
k>c(l), thus ¢(0)2% > 2F—W+l > 9 (130)
we set my, := [¢(0)2?*] — 1, hence
my < c(0)2% = c(0)NZ,  my, > ¢(0)22F1 > 2% > 9k — N (131)
From (98), (99), and (101) of Theorem 4.4, (120), and (131) we obtain

il By) = 2NN By, )

> szak(N;/Pfl/um;1+1/u i m;1/2) > 9ok (2(1/p+1/u72)k 4 ka) (132)

eiszfnon(I’ BX) 2 2—ake§3rkl—non(INk,Nk’ BLéVk (Livk)>
Z cQ—CVkal:/p_l/QmI;I/Q Z 02(—a+1/p—3/2)k (133)
em (L Bx) = 27 (1M B vy my) > 27, (134)

We transform (132)-(134) into estimates for arbitrary n € N with n > 2°1). Choose a k > ¢(1)
such that

22k—c(1) S n < 22(k+1)—c(1)7 (135)
then by (131) n < myy; and (132)—(135) imply for n > 2°()
e;an(I’BX) > 6232([, BX) > cn—a/2+1/(2p)+1/(2u)—1 + Cn—a/2—1/2 (136)
e;anfnon(],BX) > exg—non(]7BX) > cn—a/2+1/(2p)—3/4 (137)
s (I, Bx) > €X'(I,Bx) > 2" > cen (138)

Next we turn to the upper estimates. Let § and ¢ be reals satisfying

1<p<2, (139)
0<d(f—1)<2-2, (140)

and let ¢(2) € N be a constant chosen sufficiently large, so that
[0(0)2(2_5(ﬁ_1))k—| — 1> 28k
for all k > ¢(2). Now fix ky € N with ky > ¢(2) and define

22k if k< ko
ki = LﬁkOL ng = { "6(0)22k0—5(k—k0)‘| -1 it ko <k <k (141)
For ky < k < k; we have, taking into account (140),

c(O)NE = c(0)2** > ny > my, = (6(0)22’“0*5(’“1*’60)} 1
> [¢(0)2306B-k] _ 1 > 90k > okt > N (142)

c(0)2%Ro 0tk ko)=L (143)

Vv

ng
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the latter being a consequence of [a] — 1 > a/2 for a > 1. Relation (141) implies

Som < e (144)
k=0
for some constant ¢(3) € N and
QZin(]Nk’Nk,BL;Vk(Lin)) — ezal‘gnfnon(]Nk7Nk7BL;Vk(Lin))
_ eiit<INk7Nk7 BL;V’“(LLVIC)) =0 (0 <k< kO) (145)

By (98), (99), and (101) of Theorem 4.4, and (143), for kg < k < k;

ezakn(INk,Nk’ BL;V](; (LuNk)) S C(k + 1)1*1/UN;/p*1/un;1+1/U + C(k + 1)1/27};1/2

< C(k + 1)171/u2(1/p71/u)k+(2/u72)k0+(171/u)5(k7k0)

ek + 1)1/ hoté(i—ko) /2 (146)
e;al;nfnon(INk,Nk’BLéVk(LJJk)) < cN;/p*1/2n21/2 < 2(1/p=1/2)k—ko+38(k—ko) /2 (147)
et non [ NeNe BLﬁ,Vk (Lffk)) < 1. (148)

Now we set

8= O‘;r L (149)

Since a > 1, (139) is satisfied and (140) turns into
0<d<a-1 (150)

(The reason for not fixing this value of § from the beginning is that we want to reuse relations
(139)—(144) in the proof of Proposition 5.6 with another value of 8.) From (122), (128), (141),
and (144)—(150) we obtain

Ce(3azro (1, Bx)

k1
< C2fak1 +e Z 27ak((k + 1)171/u2(1/p71/u)k+(2/u72)k0+(171/u)6(k7k0)
k=ko
+(k + 1)1/22—k0+6(k—k0)/2)

k1
CZfaﬁko + C(ko + 1)171/u2(7a+1/p+1/u72)k0 Z 2(fa+1/p71/u+(171/u)6)(kfko)

k=ko

k1
+C(l€0 + 1)1/22—(a+1)k0 Z 2(—a+5/2)(k—ko)
k=ko
CQf(aJrl)ko +C(kf0 + 1)171/u2(7a+1/p+1/u72)k0 +C(l€0 + 1)1/227(a+1)k0

C(k0+ 1)171/u2(7a+1/p+1/u72)k0 +C(k0+ 1)1/22*(0&4’1)]@07 (151)

IN

IN

IN
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k1
62?;1;2112%3 (I, BX) < C2—ak1 +e Z 2—ozk+(1/p—1/2)k:—ko+5(k—k’0)/2
k=ko

k1
< 9-0Bko | o(—at1/p=3/2)k Z o(~a+1/p=1/2+6/2)(k—ko)

k=kg
< etk o p(—atl/p=3/2)ko < co(-a+1/p=3/2)ko (152)
k1
(1, By) < 27 oY 27 < oo, (153)
k=ko

Finally, let
n > ¢(3)2%.

Then we can choose ky > ¢(2) so that
c(3)2%0 < n < ¢(3)2% kot D),

which together with (151)-(153) gives for n > ¢(3)2%(?

e;an(LBX) < C(k?o + 1)171/u2(7a+1/p+1/u72)k0 + C(l{}o + 1)1/227(a+1)k0
< Cn—a/2+l/(2p)+1/(2u)—1(log(n+ 1))1—1/u+Cn—a/2—1/2(log(n+ 1))1/2
6f’;etnfnon(_[7 BX) < 62(—a+1/p—3/2)k0 < Cn—a/2+1/(2p)—3/4
egetfnon([7BX) < C2—o¢kg < Cn—a/Q'

Combined with (136)-(138) and (2) this completes the proof with ny = max(2°("), ¢(3)22¢2).
[

The following is a direct consequence of Proposition 5.2.

Corollary 5.3. Let 1 < p <2< u < oo and o > 1. Then there are constants c1,co > 0 and
ng € N such that for n > ng

ran I B )
1/(2u)—1/4 1/4-1/(2p) « _%n (£, Bx
an + an - eglanfnon<1’ BX)

< Cin/(Qu)_l/4(log(n+1))1_1/“+czn1/4_l/(2p)(log(n+1))1/2.
Forp=1, u= o0 this gives

eran*non I’ B
antt(log(n + 1))t < neran(]( B )X)
n y DX

< 02n1/4.

5.2 Infinite diagonal problems

A similar technique as used above can be applied to the results of [9] on approximation in finite
dimensional spaces. This analysis leads firstly to an infinite dimensional problem with largest
so far known gap of order n'/?(logn)~! for all n. Secondly, we can produce examples with either
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the source space or the target space being Hilbertian and the gap being of order n'/4(log n) /2.
This shows that the adaption problem has a negative solution even in such situations. All this
relates to the setting of standard information. For the case of linear information we refer
to [10], where an infinite dimensional problem with a Hilbertian target space and a gap of
n/?(logn)~/? was found.

For our purpose we have to consider a slightly different from (116) situation, namely that
the problems Pj have different target spaces, so let T, € L(Xj,Gg), where X; and Gy are
Banach spaces, let ) # Ay C X}, and put Py = (Bx,, Gk, T, K, Ag). Let 1 < ¢; < oo and

define .
¢~ (o)
k=0

We consider the diagonal problem P = (Bx,G,T,K, A), where X and A are given as above in
(111) and (115), while

Lgy

1 1 1
— = (— — —) (154)
w a P/ 4

(thus w = oo for p; < 1), the operator 7' is well-defined and bounded iff

With

[Tk [Dle, < o0, (155)

because

Il = s (T, = sup I sup T(ze)le,)],,

NzklDllep, <1 Gx)llep, <1 llzk <k

= sup [[ITallbe) |, = NCTElD e

1(68)lley, <1

where the latter equality is obvious for the case p; < ¢y, while for p; > ¢; we refer to [14], the
case n = 1 of Th. 11.11.4. Analogously, we have

k1

”T_TZP]“HL(X,G) - H(”TkH)ZilirlHew (k1 € No). (156)

k=0
It turns out that we can use Lemma 5.1 also for the present situation to obtain

Corollary 5.4. Let set € {det, det—non, ran, ran-non} and suppose that (155) holds. Then for
n < NO

eiet(Tk,BXk,Gk) S eiet(T, Bx,G>. (157)

Moreover, for ki € No, (ng)i, C No, n defined by n = ZQLO ng, and w given by (154),

k1
(T, Bx, G) < (1T iZpeallp, + D € (Ti, Bx,., Gi)- (158)
k=0
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Proof. Define

Up:Gr — G, Ukgr = (0" g1),
Vi : G = G, Vi(g)i2o = 9k

We apply Lemma 5.1 with Sy = U1 and S = T. We have V.S, = T}, consequently

e (Sk, Bx,,, G) < |Ukllex*(Tx, Bx,,, Gi) = € (T}, Bx,, Gy)
< [|Villex*(Sk, Bx,, G) = €*(Sk, Bx,, G),

thus
Giet(Sk,BXk,G) = eiet(Tk,BXk,Gk). (159)

Now (120) and (121) of Lemma 5.1 together with (156) and (159) give
Giet(Tk, BXk, Gk) = efft(Sk., BXk7 G) S 6181%(5, Bx, G) = Giet(T, Bx, G)

and
k1 k1
(T, Bx,G) = (8, Bx,G) < ||S=8) Pillyxe) + 2 (S B, G)
k=0 k=0

k1 k1
= |r-17%" Pl xe + > el (Th, By, . G)
k=0 k=0

k1
= T ll,, + D (T, Bx,, G).
k=0

Let 1 <p,q,u,v < oo, My, My € N, define
JMEMe L pI(LYR) — LY (L), JMMe =

and consider the problem (BLM1 (L2 Lé‘/fl (LMz) jMuMe K AMl’MQ), where AM1Mz2 ig standard
D u

information as defined in (24). Then we have the norm bound
||JM1,M2 . Lﬁ/h (Lﬁb) N Lé\/h (Llf)\b)” _ Ml(l/p—l/Q)+M2(1/u—1/v)+ (160)
and the following theorem, which is a part of Theorem 1 in [9].

Theorem 5.5. Let 1 < p,q,u,v < 00, p < q, u>v. Then there exist constants 0 < ¢y < 1,
c1—4 > 0, such that for all n, My, My € N with n < coM, My the following hold:

1/p—1/q KR n VP ran { 7Mj, Mo My (7 Mo
s M YA =en (‘] T By Bt (B7)
1 2

1) n 1/u—1/v n 1/¢—1/p
< M=V 161
= @M M, log(M; + MQ)W - [Mg log(M; + MQ)-‘ ’ (161)

1/p—1 _
cs M, /p=1/a < e;an non (JMI Mz , BLM1 (LM
P u

LA (EA)) < gy 771, (162)
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We use Corollary 5.4 in the following situation. Let @ € R, a > 2 and define for k € N
Ne =2 Xp=LY(L)¥), Gp=LM*LY), Tp=2""J"eN

and let Py, = (BLNk(LNk)7 Lévk(Lq]JVk),Q_akJNk’N’“,K, ANeNE) - We only consider the case p < g,
D u

u > v. Furthermore, let 1 < py, ¢ < o0,
x=(@urwm) . a=(Drrm)
k=0 p1 k=0 lgy
J:X =G, J((x) = (27 JNeNegy ) € G,
By (160) we have || JNeNe o LVe(LIk) — LNk (L)%)|| = NY/P719 and with w given by (154), we
conclude from (155) that the operator J is bounded,

1711 = [Il27 R TN )Ryl = 1 HPHDR)E )y < oo,

and similarly, from (156) that there is a constant ¢ > 0 such that for all k; € N

k1
1T =S"TPd = (27 TN 2

= ||(2t-att/e- l/q)k) Y c2(—atl/p=1/q)k1 (163)

Proposition 5.6. Let 1 < p,q,u,v,p1,q1 < 00, p < q, u>v, and let o« > 2. Then there are
constants c1_4 > 0 and ng € N such that for n > ng

eyn(Tot Pl /u=l/v)/2 4 o pmal2 < gran( ] By @)

< an(_a+1/p_1/q+1/u_1/v)/2(log(n+1))1/U_1/u+an_a/2(10g<n+1))1/p_1/q,

an(fa+l/p71/q)/2 < ezanfnon(eL BX7 ) 2‘5 non(J BX, G)
< 262‘%((], Bx,G) <c n(—atl/p=1/a)/2
Proof. To obtain the lower bounds we start as in the proof of Proposition 5.2, where now

0 < ¢(0) < 1 is the constant ¢y from Theorem 5.5. We use the same definitions and relations
(129)—(131). From (157), (162), and (131) we obtain

ran(J BX; G) > Q_leEZ(JN’“’Nk, BL;V’“(LIJ:/'“)’ Lf]Vk(Lka))
gk (Nli/p_l/qﬂ/v_1/umi/u—1/u i N}?/p—2/qm’1€/q—1/p)
c2(—a+l/p=1/q+1/u=1/v)k 4 .o—ak

ak eran—non Ny, Ny,
27, (J ’BL;V’C(LLV’c

(AVARAVARRLY,

ran non(J BX, G) )y Lévk (L'L])Vk))

CQ—OCkNI;l/p_l/‘I Z 02(—06"!‘1/1’)_1/‘1)"5.

v

Arguing analogously to (135)-(137), we obtain for n > 2°()

e (J, Bx, G)

> epatl/p=l/atl/u=1/0)/2 4 p=a/2 (164)
e;;anfnon(t]7 BXa G) > c2(—04-5—1/10—1/Q)k > cn(—a-i-l/p—l/‘I)/?' (165)
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Next we show the upper estimates. Also this part is largely analogous to the respective part
of the proof of Proposition 5.2. So we use definitions and relations (139)—(144), while (145) is
replaced by

ran/ 7Ng,Ng
C (] By

det Nk,Nk
edet (JNeNE B,
P

oy L(129)
ugM,Lﬁwaw)::o (0 <k < k). (166)
Then we have by (141)(143), (160), and (161) for ko < k < ki
efzin(JNk’Nk7 BL;Vk(Lin)a Lévk (Livk))
< c(k+ 1)1/”*1/“]\[;/%UqH/U*l/”nllﬁ/”*l/” +e(k + 1)1/p71/qN§/p72/qni/qfl/p
< ok A 1)Y/o 1 ug(/p=1 a1 /o fuk (1 /L f0) (2ko—3(h—ko))

te(k + 1)H/P=1/a9@/p=2/a)k+(1/a-1/p)(2ko~0(k—ko)) (167)
et (TN By v LY (D)) < NP1 = oQ/m ok, (168)
We set
a
p=—7 (169)

so [ satisfies (139), and the requirement (140) on § > 0 turns into
0<d<a-—2 (170)
We get from (144), (158), (163), and (166)—(170)
€p(3)22t0 (S, Bx, G)

k1
< CQ(faJrl/pfl/q)kl +c Z Qfak(k + 1)1/v71/u2(1/p71/q+1/vf1/u)k+(1/u71/v)(2k075(k7k0))

k=ko
k1
+c Z 970k (| 1)1/ 1/ag(2/p=2/@)k+(1/q=1/p)(2ko—(k—ko))
k=ko
k1
+C(k)0 + 1)l/v—l/u2(—a+1/p—l/q+1/u—1/v)ko Z 2(—a+1/p—l/q+(1/v—1/u)(1+5))(l~c—k0)
k=ko
k1
Fe(hy + 1)Yr-Hag-aks 3 g-at(1/p-1/a)@9) ko
k=kg
< CQ—ako+C<k0+1)1/v—1/u2(—a+1/p—1/Q+1/u—1/v)ko_|_(k0_|_1)1/p—1/q2—ak0
S C(ko+1)l/v—l/u2(—a+1/p—1/q+1/u—1/v)ko_|_c<k0_+_1>1/p—1/q2—ak0. (171>
and
k1
Culiyamo (S, By, G) < et mmloh ¢y Dalattom /o < epattomt/abe - (172)

k=ko
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Now let n > ¢(3)22¢® | then we can choose kg > ¢(1) so that
c(3)2%0 < n < ¢(3)22 ko +D),
Together with (171) and (172) it follows that for n > ¢(3)22¢(?)
¢ (T By, G) < enot p L at a0/ (oo (4 1))Y0 1/
+en~?(log(n + 1))/P=1/a (173)
ernmon( 7 By @) < el By, G) < 2¢3°(J, By, G) < enTotV/PmVO/2 0 (174)

where we also used (8) and (2) in (174). Combining this with (164) and (165) concludes the
proof.
[l

Corollary 5.7. Assume that o > 2. Then there are constants ci_g > 0 and ng € N such that
m the casep=1, u=00,q¢g=00,v =1
eranfnon((]’ BX7 G)

e (logln + 1) < 2or BTG

< con'/? (n > ng).

Furthermore, if p=u=p; =2, g =00, v=1, then X is a Hilbert space and

ran—non J B G
csnt/*(log(n +1))7Y2 < En (/, Bx, G)

< cm't > ng).
S CemiBr.G) San’ (nzmn)

Ifp=1,u=00,q=v=q =2, then G is a Hilbert space and we have

B e;Lanfnon J,B ,G
C5n1/4(10g<n + 1)) V2 < eran(} BXXG) )

< cgn'/* (n > ngp).

Proof. Tt follows from Proposition 5.6 that for n > nyg

ran J B G)
(1 fu—1/0)/2 Wfa-1/p)2 « _Cn (S Bx,
cin +cn < e%an_non(i BX,G)

< M2 (Jog(n 4+ 1))V 4 epn/a= P2 (Jog(n 4 1)) VP,
O
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