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Abstract

We study the complexity of randomized computation of integrals depending on a
parameter, with integrands from Sobolev spaces. That is, for r, d1, d2 ∈ N, 1 ≤ p, q ≤ ∞,
D1 = [0, 1]d1 , and D2 = [0, 1]d2 we are given f ∈W r

p (D1×D2) and we seek to approximate

Sf =

∫
D2

f(s, t)dt (s ∈ D1),

with error measured in the Lq(D1)-norm. Our results extend previous work of Heinrich
and Sindambiwe (J. Complexity, 15 (1999), 317–341) for p = q =∞ and Wiegand (Shaker
Verlag, 2006) for 1 ≤ p = q <∞. Wiegand’s analysis was carried out under the assump-
tion that W r

p (D1 ×D2) is continuously embedded in C(D1 ×D2) (embedding condition).
We also study the case that the embedding condition does not hold. For this purpose a
new ingredient is developed – a stochastic discretization technique.

The paper is based on Part I, where vector valued mean computation – the finite-
dimensional counterpart of parametric integration – was studied. In Part I a basic problem
of Information-Based Complexity on the power of adaption for linear problems in the
randomized setting was solved. Here a further aspect of this problem is settled.

1 Introduction

Parametric integration is the following problem. We are given a function f on D = D1 × D2

and want to compute (approximately)

Sf =

∫
D2

f(s, t)dt (s ∈ D1),

that is, an integral which depends on a parameter (precise definitions are given below). Here
D1 is the parameter domain and D2 is the integration domain. If either of them becomes a
single point, we have the integration or the approximation problem, respectively. In general,
parametric integration is an intermediate problem between integration and approximation, and
as such, shows features of both and clarifies the passage from one to the other.
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We consider parametric integration for D1 = [0, 1]d1 , D2 = [0, 1]d2 , f ∈ W r
p ([0, 1]d1+d2),

the Sobolev space, and the target space (in which the error is measured) is Lq([0, 1]d1). For
the first time parametric integration was studied from the point view of information-based
complexity theory in Heinrich, Sindambiwe [10], where the p = q = ∞ case was settled. The
case 1 ≤ p = q < ∞ was studied by Wiegand in [14]. The present paper extends the above
results to the case p 6= q. Moreover, [14] was based on the assumption that W r

p ([0, 1]d1+d2)
is continuously embedded into C([0, 1]d1+d2), the space of continuous functions (embedding
condition). Our analysis also covers the case of non-embedding.

A main tool is the discretization technique for problems with standard information, which
was developed in [3] and [4] for the analysis of integration and approximation in the quantum
setting of information-based complexity theory. It was also applied to construct Monte Carlo
methods for integration using few random bits in [11, 2, 14, 15]. This method reduces an infinite
dimensional problem to a series of its finite dimensional counterparts. It is deterministic and
needs the embedding condition. To get away from this assumption we develop here a stochastic
discretization technique which also covers the case of non-embedding.

In Part I the adaption problem in the randomized setting was settled: Is there a constant
c > 0 such that for all linear problems P = (F,G, S,K,Λ) and all n ∈ N

eran−non
n (S, F,G) ≤ ceran

n (S, F,G) ?

see [12], [13], and Part I for further references. It was shown in Part I that there is a sequence
of vector-valued mean computation problems Pn (n ∈ N) such that

lim
n→∞

eran−non
n (Sn, Fn, Gn)

eran
n (Sn, Fn, Gn)

=∞. (1)

The results of the present paper imply that there is a single problem P such that

lim
n→∞

eran−non
n (S, F,G)

eran
n (S, F,G)

=∞. (2)

We show that the parametric integration problem with 2 < p < q ≤ ∞ has this property.
Moreover, there are instances of this problem where the quotient in (2), that is, the gap between
non-adaptive and adaptive randomized minimal errors is (up to log factors) of order n1/8. For
problems with larger gaps (in the sense of (1)) we refer to [9].

The paper is organized as follows: In Section 2 we present the needed prerequisites including
some results from Part I. In Section 3 we develop the randomized discretization technique (which
contains the deterministic one as a special case). This technique is used in Section 4 to set
up and analyze non-adaptive and adaptive algorithms for parametric integration with error of
optimal order (often up to logarithms). Lower bounds and the main theorem on the complexity
are proved in Section 5. The final Section 6 contains a discussion of the maximal gap between
non-adaptive and adaptive randomized algorithms.

2 Preliminaries

We denote N = {1, 2, . . . }, N0 = N∪{0}, and for N ∈ N, Z[1, N ] := {1, 2, . . . , N}. The symbol
K stands for the scalar field R or C. We often use the same symbol c, c0, c1, . . . for possibly
different constants, even if they appear in a sequence of relations. However, some constants
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are supposed to have the same meaning throughout the paper – these are denoted by symbols
c(0), c(1), . . . . Throughout this paper log means log2. The unit ball of a normed or semi-normed
space X is denoted by BX , the σ-algebra of Borel subsets of a normed space X by B(X) and
the space of bounded linear operators from X to a normed space Y by L(X, Y ).

Let d ∈ N, D = [0, 1]d. By C(D) we denote the space of continuous functions on D, equipped
with the supremum norm. For 1 ≤ p ≤ ∞ let Lp(D) be the space of equivalence classes of K-
valued Borel measurable functions which are p-integrable with respect to the Lebesgue measure,
endowed with the usual norm

‖f‖Lp(D) =

{ (∫
D
|f(t)|pdt

)1/p
if p <∞

ess-supt∈D|f(t)| if p =∞.

For r ∈ N the Sobolev space W r
p (D) consists of all f ∈ Lp(D) such that for all

α = (α1, . . . , αd) ∈ Nd
0 with |α| :=

∑d
j=1 αj ≤ r, the generalized partial derivative ∂αf belongs

to Lp(D). The norm on W r
p (D) is defined by

‖f‖W r
p (D) =

{ (∑
|α|≤r ‖∂αf‖

p
Lp(D)

)1/p

if p <∞
max|α|≤r ‖∂αf‖L∞(D) if p =∞.

For r = 0 we set W r
p (D) = Lp(D). We recall from [1], Th. 5.4, that W r

p (D) is continuously
embedded into C(D) if and only if

p = 1 and r/d ≥ 1
or

1 < p ≤ ∞ and r/d > 1/p

 (3)

(embedding condition).
Now let 1 ≤ p, q ≤ ∞, d1, d2 ∈ N0, with d = d1 + d2. First assume d1, d2 ∈ N and let

D1 = [0, 1]d1 , D2 = [0, 1]d2 , thus D = D1×D2. Consider the operator of parametric integration
S : W r

p (D)→ Lq(D1) defined by

(Sf)(s) =

∫
D2

f(s, t) dt (s ∈ D1). (4)

We always assume d ≥ 1, but we also want to include the border-line cases d1 = 0 and d2 = 0.
In the case of dι = 0 (ι = 1, 2) we let Dι = {0} be the one-point-set. The integral over Dι

as well as the space Lq(Dι) are considered as defined with respect to the trivial probability
measure on Dι = {0}. In other words, for d1 = 0 we have Lq(D1) = K and S : W r

p (D)→ K,

Sf =

∫
D

f(t) dt

is the integration operator. It is well-defined and continuous for all r ∈ N0 and 1 ≤ p ≤ ∞.
If d2 = 0 we have

∫
D2
f(s) dt = f(s) and therefore S : W r

p (D)→ Lq(D),

(Sf)(s) = f(s) (s ∈ D) (5)
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is the approximation operator. If d1 ≥ 1, the operator S from (4) and (5) is well-defined and
continuous iff the embedding of W r

p (D1) to Lq(D1) is continuous, that is, iff

1 ≤ q <∞ and r
d1
≥
(

1
p
− 1

q

)
+

or
q =∞, 1 < p <∞, and r

d1
> 1

p

or
q =∞, p ∈ {1,∞}, and r

d1
≥ 1

p
.


(6)

Here we used the notation a+ = max(a, 0) for a ∈ R.
In the sequel we also need the stronger condition (of compact embedding)

r

d1

>

(
1

p
− 1

q

)
+

. (7)

In the terminology of Section 2 of Part I we put G = Lq(D1), and K = K. We consider
standard information, that is, function values. This needs some care since W r

p (D) consists of
equivalence classes of functions.

If (3) holds, then each class [f ] ∈ W r
p (D) contains a unique continuous representative and

we set Wr
p(D) = {f ∈ C(D) : [f ] ∈ W r

p (D)}, equipped with the norm ‖f‖Wr
p(D) := ‖[f ]‖W r

p (D).
If (3) does not hold, we let Wr

p(D) be the respective Sobolev space of functions (not equiv-
alence classes), thus f ∈ Wr

p(D) iff [f ] ∈ W r
p (D), where [f ] is the equivalence class of f with

respect to equality up to a subset of D of Lebesgue measure zero. This is a linear space and
‖f‖Wr

p(D) := ‖[f ]‖W r
p (D) is a semi-norm on it. Clearly, S can also be viewed as an operator from

Wr
p(D) to Lq(D1).
Finally, in both cases we put F = BWr

p(D) or F = Wr
p(D) and Λ = {δt : t ∈ D}, where

δt(f) = f(t). Consequently, here we study the problems

(BWr
p(D), Lq(D1), S,Λ,K) (8)

(Wr
p(D), Lq(D1), S,Λ,K). (9)

We also recall the discrete version of parametric integration studied in Part I. Let M,M1,M2

be finite sets and define the space LMp to be the set of all functions f : M → K with norm

‖f‖LMp =


(

1

|M |
∑
i∈M

|f(i)|p
)1/p

if p <∞

max
i∈M
|f(i)| if p =∞

and the operator of discrete parametric integration (or vector-valued mean computation) as

SM1,M2 : LM1×M2
p → LM1

q (10)

with

(SM1,M2f)(i) =
1

|M2|
∑
j∈M2

f(i, j). (11)

In this connection we consider the problems(
B
L
M1×M2
p

, LM1
q , SM1,M2 ,K,Λ

)
(12)(

LM1×M2
p , LM1

q , SM1,M2 ,K,Λ
)
, (13)
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where Λ = {δij : i ∈ M1, j ∈ M2} with δij(f) = f(i, j). Given N,N1, N2 ∈ N, we write LNp for

L
Z[1,N ]
p , LN1,N2

p for L
Z[1,N1]×Z[1,N2]
p , and SN1,N2 for SZ[1,N1],Z[1,N2]. Furthermore, for 1 ≤ p, q ≤ ∞

we define

p̄ = min(p, 2), σ1 =

{
1 if p = q =∞
0 otherwise.

(14)

For the definition of the non-adaptive randomized algorithm A
(2)
n =

(
A

(2)
n,ω

)
ω∈Ω

and the adaptive

randomized algorithm A
(3)
n,m =

(
A

(3)
n,m,ω

)
ω∈Ω

for problem (13) we refer to Part I. The next two
results are Proposition 4.2 and 4.3 of Part I. Since they will be used in connection with (45)
below for several n simultaneously, we denote the involved probability space by (Ω2,Σ2,P2)
and assume w.l.o.g. that it is the same for all n ∈ N (the index 2 is convenient for the further
notation). The respective expectation is denoted by E2.

Proposition 2.1. Let 1 ≤ p, q ≤ ∞ and 1 ≤ w ≤ p, w < ∞. Then there is a constant c > 0
such that for all n,N1, N2 ∈ N with n < N1N2 and all f ∈ LN1,N2

p

E2A
(2)
n,ω2

f = SN1,N2f (n ≥ N1), card(A(2)
n,ω2

) ≤ 2n (ω2 ∈ Ω2), (15)

and (
E2‖SN1,N2f − A(2)

n,ω2
f‖w

L
N1
q

)1/w

≤ cN
(1/p−1/q)+

1

⌈
n

N1

⌉−1+1/p̄

min

(
log(N1 + 1),

⌈
n

N1

⌉)σ1/2

‖f‖
L
N1,N2
p

. (16)

The adaptive algorithm A
(3)
n,m will only be used in the case 2 < p < q ≤ ∞. The following

is Proposition 4.3 of Part I.

Proposition 2.2. Let 2 < p < q ≤ ∞ and 1 ≤ w < ∞. Then there exist constants c1, c2 > 0
such that the following hold for all m,n,N1, N2 ∈ N and f ∈ LN1,N2

p :

card(A(3)
n,m,ω2

) ≤ 6mn (17)

and for m ≥ c1 log(N1 +N2), 1 ≤ n < N1N2(
E2‖SN1,N2f − A(3)

n,m,ω2
f‖w

L
N1
q

)1/w

≤ c2

(
N

1/p−1/q
1

⌈
n

N1

⌉−(1−1/p)

+

⌈
n

N1

⌉−1/2
)
‖f‖

L
N1,N2
p

. (18)

Let us also note that for all ω2 ∈ Ω2,

A(2)
n,ω2

(0) = 0, A(3)
n,m,ω2

(0) = 0. (19)

This follows directly from the definitions of A
(2)
n,ω2 and A

(3)
n,m,ω2 in Part I. The next proposition

summarizes the lower bounds in Theorem 4.5 of Part I.
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Proposition 2.3. Let 1 ≤ p, q ≤ ∞. Then there exists constants 0 < c0 < 1, c1, . . . , c4 > 0,
such that for n,N1, N2 ∈ N with n < c0N1N2 the following hold:
If p ≤ 2 or p ≥ q, then

eran−non
n (SN1,N2 , B

L
N1,N2
p

, LN1
q ) ≥ eran

n (SN1,N2 , B
L
N1,N2
p

, LN1
q )

≥ c1N
(1/p−1/q)+

1

⌈
n

N1

⌉−(1−1/p̄)(
min

(
log(N1 + 1),

⌈
n

N1

⌉))σ1/2

. (20)

If 2 < p < q, then

eran
n (SN1,N2 , B

L
N1,N2
p

, LN1
q )

≥ c2N
1/p−1/q
1

⌈
n

N1

⌉−(1−1/p)

+ c2

⌈
n

N1

⌉−1/2

(log(N1 + 1))δq,∞/2 (21)

and

eran−non
n (SN1,N2 , B

L
N1,N2
p

, LN1
q ) ≥ c3N

1/p−1/q
1

⌈
n

N1

⌉−1/2

. (22)

In the deterministic setting we have

edet
n (SN1,N2 , B

L
N1,N2
p

, LN1
q ) ≥ c4N

(1/p−1/q)+

1 . (23)

3 Deterministic and stochastic discretization

In this section we are concerned with discretization, that is, reducing the problem of parametric
integration to a family of vector-valued summation problems. We present the needed ingredi-
ents of the discretization technique developed in [3, 4] and used in [11, 2, 14, 15]. This technique
is based on deterministic function evaluations, the availability of which requires that W r

p (D)
is continuously embedded in C(D). In this paper we also study the case of non-embedding.
For this purpose we develop here, in addition, a stochastic discretization technique. The pre-
sentation below also includes deterministic discretization, which appears as a special case of
the stochastic one. In this section we assume d1, d2 ∈ N0, d1 + d2 6= 0, that is, we include the
border-line cases d1 = 0, d2 6= 0 (integration) and d1 6= 0, d2 = 0 (approximation).

For l ∈ N0 let

D =
2dl⋃
i=1

Dli

be a partition into congruent cubes of disjoint interior with side length 2−l. If d1d2 6= 0, we
assume in addition, that

Dli = D
(1)
li1
×D(2)

li2
i = 2d2l(i1 − 1) + i2,

where

D1 =
2d1l⋃
i1=1

D
(1)
li1
, D2 =

2d2l⋃
i2=1

D
(2)
li2
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are respective partitions of D1 and D2.
Let sli ∈ Dli denote the point with minimal Euclidean norm. We introduce the following

operators Eli and Rli on F(D,K), the set of all K-valued functions on D, by setting for s ∈ D

(Elif)(s) = f(sli + 2−ls)

and

(Rlif)(s) =

{
f(2l(s− sli)) if s ∈ Dli

0 otherwise.
(24)

We also need the operators R
(1)
li1

for 1 ≤ i1 ≤ 2d1l, which are defined analogously, with D1

instead of D. Definition (24) also makes sense if d1 = 0. Then we have F({0},K) = K and

R
(1)
li1

= IdK, where Id denotes the identity operator.
Fix r ∈ N and 0 < δ < 1. If r ≥ 2, let (tk)

κ
k=1 be the uniform grid of mesh size (r−1)−1(1−δ)

on [0, 1 − δ]d and if r = 1, set κ = 1 and t1 = 0. Let P be for d = 1 the respective Lagrange
interpolation operator of degree r − 1 and for d > 1 its tensor product. We consider P as an
operator from F(D,K) to L∞(D). Let Pr−1

max(Q) denote the space of polynomials of maximum
degree r − 1 on a set Q ⊂ Rd. Then P can be represented as

(Pf)(t) =
κ∑
k=1

f(tk)ϕk (f ∈ F(D,K), t ∈ D). (25)

with the d-dimensional tensor product Lagrange polynomials (ϕk)
κ
k=1, which form a basis in

the space Pr−1
max(Rd).

Now we randomize this operator. Let % be a random variable over a probability space
(Ω1,Σ1,P1) with values in [0, 1]d. Define

(P0,%f)(t) = χD(t)
κ∑
k=1

f(tk + δ%)ϕk(t− δ%) (f ∈ F(D,K), t ∈ D). (26)

Expanding ϕk(t− δ%) with respect to t and %, we can represent

ϕk(t− δ%) =
κ∑
j=1

ajk(%)ϕj(t),

with ajk ∈ Pr−1
max(Rd), hence

P0,%f = χD

κ∑
j=1

κ∑
k=1

ajk(%)f(tk + δ%)ϕj (f ∈ F(D,K)).

For f ∈ F(D,K) and l ∈ N0 we set

Pl%f =
2dl∑
i=1

RliP0,%Elif =
2dl∑
i=1

κ∑
j=1

κ∑
k=1

ajk(%)f(sli + 2−l(tk + δ%))Rliϕj. (27)

Next we define

P ′0,%f = (P1,% − P0,%)f =
2d∑
i0=1

κ∑
j0=1

κ∑
k0=1

aj0k0(%)f(s1,i0 + 2−1(tk0 + δ%))R1,i0ϕj0

−χD
κ∑

m=1

κ∑
k0=1

amk0(%)f(tk0 + δ%)ϕm. (28)
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Expanding

χD1,i0
ϕm =

κ∑
j0=1

βi0mj0R1,i0ϕj0

with βi0mj0 ∈ K, (28) turns into

P ′0,%f =
2d∑
i0=1

κ∑
j0=1

κ∑
k0=1

(
aj0k0(%)f(s1,i0 + 2−1(tk0 + δ%))

−
κ∑

m=1

βi0mj0amk0(%)f(tk0 + δ%)

)
R1,i0ϕj0 ,

which we write as

P ′0,%f =
κ′∑
j=1

κ′′∑
k=1

bjk(%)f(tjk(%))ψj,

with
κ′ = 2dκ, κ′′ = 2κ, (29)

and for 1 ≤ i0 ≤ 2d, 1 ≤ j0 ≤ κ, j = κ(i0 − 1) + j0, 1 ≤ k ≤ 2κ

ψj = R1,i0ϕj0 (30)

tjk(%) =

{
s1,i0 + 2−1(tk + δ%) if 1 ≤ k ≤ κ
tk−κ + δ% if κ+ 1 ≤ k ≤ 2κ

bjk(%) =


aj0k(%) if 1 ≤ k ≤ κ
κ∑

m=1

βi0mj0am,k−κ(%) if κ+ 1 ≤ k ≤ 2κ.

Thus the tjk(%) are D-valued and the bjk(%) scalar-valued random variables.
Now we put

ψlij = Rliψj (1 ≤ i ≤ 2dl, 1 ≤ j ≤ κ′) (31)

and let

P ′l%f =
2dl∑
i=1

RliP
′
0,%Elif =

2dl∑
i=1

κ′∑
j=1

κ′′∑
k=1

bjk(%)f(sli + 2−ltjk(%))ψlij. (32)

Observe that

P ′l% =
2dl∑
i=1

Rli

(
2d∑
i0=1

R1,i0P0,%E1,i0 − P0,%

)
Eli = Pl+1,% − Pl%, (33)

hence for l0, l1 ∈ N0, l0 ≤ l1

Pl1% = Pl0% +

l1−1∑
l=l0

P ′l%. (34)

For the sake of brevity we denote

I1,l = Z[1, 2d1l]× Z[1, κ′], I2,l = Z[1, 2d2l]
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and set
N1,l := |I1,l| = κ′2d1l, N2,l := |I2,l| = 2d2l. (35)

Define the operator Tl : span
{
ψlij : i ∈ Z[1, 2dl], j ∈ Z[1, κ′]

}
→ L

I1,l×I2,l
p by

Tlψlij = δ(i1,j),i2 ((i1, j) ∈ I1,l, i2 ∈ I2,l, i = 2d2l(i1 − 1) + i2).

It follows from the definition (30), (31) of ψlij and the independence of the sequence (ϕk)
κ
k=1,

see (25), that Tl is correctly defined and

‖Tlf‖
L
I1,l×I2,l
p

≤ c‖f‖Lp(D) (f ∈ span {ψlij}) . (36)

We define furthermore
Ul% :Wr

p(D)→ L
I1,l×I2,l
p , Ul% = TlP

′
l%. (37)

Then

(Ul%f)((i1, j), i2) =
κ′′∑
k=1

bjk(%)f(sli + 2−ltjk(%)). (38)

Next we turn to the operator of parametric integration. Put

θj = Sψj ∈ L∞(D1) (1 ≤ j ≤ κ′)

and
θli1j = R

(1)
li1
θj ((i1, j) ∈ I1,l). (39)

Observe that for (i1, j) ∈ I1,l, i2 ∈ I2,l, i = 2d2l(i1 − 1) + i2,

Sψlij = SRliψj = 2−d2lR
(1)
li1
Sψj = 2−d2lθli1j. (40)

Let

Vl : Lq(I1,l)→ Lq(D1), Vlg =
2d1l∑
i1=1

κ′∑
j=1

g(i1, j)θli1j. (41)

According to (39), for d1 ≥ 1 the supports of the θli1j are disjoint for different i1, therefore

‖Vlg‖Lq(D1) =

(
2d1l∑
i1=1

∥∥∥∥ κ′∑
j=1

g(i1, j)θli1j

∥∥∥∥q
Lq(D1)

)1/q

=

(
2−d1l

2d1l∑
i1=1

∥∥∥∥ κ′∑
j=1

g(i1, j)θj

∥∥∥∥q
Lq(D1)

)1/q

≤ c‖g‖Lq(I1,l), (42)

with the obvious modifications for q =∞. This relation trivially also holds for d1 = 0, since in
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this case by (39) θli1j = θj. Now (32), (38), (40), and (41) give

SP ′l%f =
2dl∑
i=1

κ′∑
j=1

κ′′∑
k=1

bjk(%)f(sli + 2−ltjk(%))Sψlij

=
2d1l∑
i1=1

κ′∑
j=1

2−d2l

2d2l∑
i2=1

κ′′∑
k=1

bjk(%)f(sli + 2−ltjk(%))θli1j

=
2d1l∑
i1=1

κ′∑
j=1

2−d2l

2d2l∑
i2=1

(Ul%f)((i1, j), i2)θli1j

=
2d1l∑
i1=1

κ′∑
j=1

(SI1,l,I2,lUl%f)(i1, j)θli1j = VlS
I1,l,I2,lUl%f, (43)

where SI1,l,I2,l is the operator of vector valued mean computation defined in (10) and (11).
Using (34), this implies

S = S − SPl1% + SPl0% +

l1−1∑
l=l0

SP ′l% = S − SPl1% + SPl0% +

l1−1∑
l=l0

VlS
I1,l,I2,lUl%. (44)

This way the problem S is reduced to the computation of SPl0%, which will be done exactly,
provided l0 is suitable chosen, and to the (approximate) computation of the vector-valued

means SI1,l,I2,l for l0 ≤ l < l1. So let l0 ≤ l1 ∈ N0 and let Al,ω : L
I1,l,I2,l
p → L

I1,l
q for each l with

l0 ≤ l < l1 be a randomized algorithm for problem (13), independent of %. For convenience of
presentation, we assume that the Al,ω are defined over a different from (Ω1,Σ1,P1) probability
space (Ω2,Σ2,P2) and put

(Ω,Σ,P) = (Ω1,Σ1,P1)× (Ω2,Σ2,P2).

The expectation with respect to P2 and P are denoted by E2 and E, respectively. Now we define
a randomized algorithm A = (Aω)ω∈Ω for problem (9) by setting

Aω(f) = SPl0,%(ω1)f +

l1−1∑
l=l0

VlAl,ω2(Ul,%(ω1)f) (ω = (ω1, ω2)). (45)

For fixed ω ∈ Ω, Aω is indeed a deterministic algorithm in the formal sense of Section 2 of Part
I. This follows from Lemma 2 and 3 of [5]. Moreover, if the Al,ω2 are non-adaptive, then so is
Aω. Finally, we assume that for l0 ≤ l < l1 and f ∈ Wr

p(D) the mappings

(ω1, ω2)→

{
card

(
Al,ω2 , Ul,%(ω1)f

)
Al,ω2(Ul,%(ω1)f)

(46)

are Σ-measurable. Then (Aω)ω∈Ω is a randomized algorithm for problem (9).
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Proposition 3.1. Let r ∈ N0, 1 ≤ p, q ≤ ∞, 1 ≤ w <∞, and assume that (6) and (46) hold.
Then there is a constant c > 0 such that for all l0, l1, % as above, and f ∈ Wr

p(D)(
E ‖Sf − Aω(f)‖wLq(D1)

)1/w

≤ c(E1‖Sf − SPl1%(ω1)f‖wLq(D1))
1/w + c

l1−1∑
l=l0

(
E2‖Al,ω2(0)‖w

L
I1,l
q

)1/w

+c

l1−1∑
l=l0

sup
g∈L

I1,l×I2,l
p \{0}

(
‖g‖−w

L
I1,l×I2,l
p

E2‖SI1,l,I2,lg − Al,ω2(g)‖w
L
I1,l
q

)1/w

×
(
E1

∥∥(Pl+1,%(ω1) − Pl%(ω1))f
∥∥w
Lp(D)

)1/w

. (47)

Moreover,

card(Aω,Wr
p(D)) ≤ κ2(d1+d2)l0 + κ′′

l1−1∑
l=l0

card
(
Al,ω2 , L

I1,l×I2,l
p

)
(ω = (ω1, ω2) ∈ Ω). (48)

Proof. Relation (48) follow directly from (27) and (38). By (44) and (45)

Sf − Aω(f) = Sf − SPl1%f +

l1−1∑
l=l0

Vl
(
SI1,l,I2,lUl,%(ω1)f − Al,ω2(Ul,%(ω1)f)

)
. (49)

For fixed ω1 we have

E2

∥∥SI1,l,I2,lUl,%(ω1)f − Al,ω2(Ul,%(ω1)f)
∥∥w
L
I1,l
p

≤ cE2‖Al,ω2(0)‖w
L
I1,l
q

+c sup
g∈L

I1,l×I2,l
p \{0}

(
‖g‖−w

L
I1,l×I2,l
p

E2

∥∥SI1,l,I2,lg − Al,ω2(g)
∥∥w
L
I1,l
q

)
‖Ul,%(ω1)f‖w

L
I1,l×I2,l
p

.

Taking the expectation with respect to ω1 and using (42), this gives

E
∥∥Vl(SI1,l,I2,lUl,%(ω1)f − Al,ω2(Ul,%(ω1)f)

)∥∥w
Lq(D1)

≤ cE1E2

∥∥SI1,l,I2,lUl,%(ω1)f − Al,ω2(Ul,%(ω1)f)
∥∥w
Lq(D1)

≤ cE2‖Al,ω2(0)‖w
L
I1,l
q

+c sup
g∈L

I1,l×I2,l
p \{0}

(
‖g‖−w

L
I1,l×I2,l
p

E2

∥∥SI1,l,I2,lg − Al,ω2(g)
∥∥w
L
I1,l
q

)
E1‖Ul,%(ω1)f‖w

L
I1,l×I2,l
p

. (50)

Finally, by (36) and (37)

E1‖Ul,%(ω1)f‖w
L
I1,l×I2,l
p

≤ ‖Tl‖wE1‖(Pl+1,%(ω1) − Pl%(ω1))f‖wLp(D)

≤ cE1‖(Pl+1,%(ω1) − Pl%(ω1))f‖wLp(D). (51)

Combining (49)–(51) gives (47).



12

In the sequel, we will be interested in the following two special cases of the random variable
% from (26). Firstly, % = ζ, where ζ is a uniformly distributed on [0, 1]d random variable taking
all values in [0, 1]d, and secondly, let % = ζ0, with ζ0 a random variable with ζ0(ω1) ≡ 0 for all
ω1 ∈ Ω1. Thus, ζ0 is the deterministic case. The following result contains the crucial estimates
for the discretization technique.

Proposition 3.2. Let r, d ∈ N, 1 ≤ p, q ≤ ∞, r/d > 1/p − 1/q, 1 ≤ w ≤ q, w < ∞. Then
there are constants c1, c2 > 0 such that for all l ∈ N0

sup
f∈BWrp(D)

(E1‖f − Plζf‖wLq(D))
1/w ≤ c12

−rl+( 1
p
− 1
q )+

dl
. (52)

Moreover, if the embedding condition (3) holds, then

sup
f∈BWrp(D)

‖f − Plζ0f‖Lq(D) ≤ c22
−rl+( 1

p
− 1
q )+

dl
. (53)

Proof. Relation (53) is contained in [4], relation (12), while (52) was shown in [6], Proposition
1, for q < ∞. The estimate (52) also holds for q = ∞, since in this case r/d > 1/p, so the
embedding condition (3) holds and [4], relation (12) gives

sup
f∈BWrp(D)

‖f − Plζ(ω1)f‖Lq(D) ≤ c2
−rl+( 1

p
− 1
q )+

dl

for each ω1 ∈ Ω1, with a constant not depending on ω1 (the latter following directly from the
proof of (12) in [4]).

Corollary 3.3. Let r ∈ N, 1 ≤ p ≤ ∞ and 1 ≤ w ≤ p, w < ∞. Then the following holds for
% = ζ, and if the embedding condition (3) is satisfied, also for % = ζ0.

sup
f∈BWrp(D)

(E1‖Ul%f‖w
L
I1,l×I2,l
p

)1/w ≤ c2−rl.

Proof. From (33), (36), (37), and Proposition 3.2 we obtain

sup
f∈BWrp(D)

(E1‖Ul%f‖w
L
I1,l×I2,l
p

)1/w ≤ ‖Tl‖ sup
f∈BWrp(D)

(E1‖Pl+1,% − Pl%f‖wLp(D))
1/w ≤ c2−rl.

Lemma 3.4. Let r ∈ N, 1 ≤ p, q ≤ ∞, 1 ≤ w ≤ p, w < ∞, and assume (7). Then the
following holds for % = ζ and, if the embedding condition (3) is satisfied, also for % = ζ0. There
is a constant c > 0 such that for all l1 ∈ N0

sup
f∈BWrp(D)

(
E1‖Sf − SPl1%f‖wLq(D1)

)1/w

≤ c2
−rl1+( 1

p
− 1
q )+

d1l1
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Proof. For p = q, and therefore also for q ≤ p, this follows directly from (52) of Proposition
3.2, thus, we can assume q > p. By Corollary 3.3 and (42), for l ∈ N0

‖VlSI1,l,I2,lUl%‖L(Wr
p(D),Lw(Ω1,P1,Lq(D1)) = sup

f∈BWrp(D)

(
E1‖VlSI1,l,I2,lUl%f‖wLq(D1)

)1/w

≤ ‖Vl‖‖SI1,l,I2,l : L
I1,l,I2,l
p → L

I1,l
q ‖ sup

f∈BWrp(D)

(
E1‖Ul%f‖w

L
I1,l×I2,l
p

)1/w

≤ c2
−rl+( 1

p
− 1
q )+

d1l, (54)

where we used that ∥∥SI1,l,I2,l : L
I1,l,I2,l
p → L

I1,l
q

∥∥ ≤ c2( 1
p
− 1
q )+

d1l,

see relation (57) of Part I. Since by (7), r >
(

1
p
− 1

q

)
+
d1, (54) implies for l1 ∈ N0

∞∑
l=l1

VlS
I1,l,I2,lUl% = X (55)

with convergence in L(Wr
p(D), Lw(Ω1,P1, Lq(D1)), and

‖X‖L(Wr
p(D),Lw(Ω1,P1,Lq(D1)) ≤ c2

−rl1+( 1
p
− 1
q )+

d1l1 . (56)

On the other hand, by (34) and (43), for m > l1

SPm% − SPl1% =
m−1∑
l=l1

VlS
I1,l,I2,lUl%.

Since w ≤ p < q, Proposition 3.2 gives

sup
f∈BWrq (D)

(
E1

∥∥∥∥Sf − SPl1%f − m∑
l=l1

VlS
I1,l,I2,lUl%f

∥∥∥∥w
Lq(D1)

)1/w

= sup
f∈BWrq (D)

(
E1‖Sf − SPm%f‖wLq(D1)

)1/w

≤ ‖S : Lq(D)→ Lq(D1)‖ sup
f∈BWrq (D)

(
E1‖f − Pm%f‖wLq(D)

)1/w

≤ c2−rm,

thus,
∞∑
l=l1

VlS
I1,l,I2,lUl% = S − SPl1% (57)

with convergence in L(Wr
q (D), Lw(Ω1,P1, Lq(D1))). Let J : Wr

q (D) → Wr
p(D) denote the

identical embedding. Then (55) implies

∞∑
l=l1

VlS
I1,l,I2,lUl%J = XJ

with convergence in L(Wr
q (D), Lw(Ω1,P1, Lq(D1)). This combined with (57) yields Xf = Sf −

SPl1%f for f ∈ Wr
q (D) and, since Wr

q (D) is dense in Wr
p(D), we have X = S − SPl1%. Now the

desired estimate follows from (56).
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Let us note that if % = ζ0, then Ul,%(ω1)f does not depend on ω1 and therefore (46) follows
directly from the assumption that the (Al,ω2)ω2∈Ω2 are randomized algorithms for problem (13).
The following is a consequence of Propositions 3.1, 3.2, and Lemma 3.4.

Corollary 3.5. Let r ∈ N, 1 ≤ p, q ≤ ∞, 1 ≤ w ≤ p, w <∞, let either % = ζ and assume (7)
and (46) or % = ζ0 and assume (3). Then there is a constant c > 0 such that for all l0, l1 ∈ N0

with l0 ≤ l1

sup
f∈BWrp(D)

(
E ‖Sf − Aω(f)‖wLq(D1)

)1/w

≤ c2
−rl1+( 1

p
− 1
q )+

d1l1 + c

l1−1∑
l=l0

(
E2‖Al,ω2(0)‖w

L
I1,l
q

)1/w

+c

l1−1∑
l=l0

2−rl sup
g∈L

I1,l×I2,l
p \{0}

(
‖g‖−w

L
I1,l×I2,l
p

E2

∥∥SI1,l,I2,lg − Al,ω2g
∥∥w
L
I1,l
q

)1/w

. (58)

4 Algorithms for Parametric Integration

In this and the following sections we assume d1, d2 ∈ N. The corresponding results for the
borderline cases of integration and approximation can be found in [7], which also contains
references to the vast literature on the complexity of these problems. Define for n ∈ N, n ≥ n(0)

l0(n) = d1

⌈
log n

d1(d1 + d2)

⌉
, l1(n) =

⌈
(d1 + d2)l0(n)− σ1 log l0(n)

d1

⌉
(59)

nl(n) =
⌈
2(d1+d2)l0(n)−δmin((l−l0(n)),(l1(n)−l))⌉ (l0(n) ≤ l < l1(n)), (60)

where the constant n(0) ∈ N is chosen in such a way that for each n ≥ n(0) the resulting
l0(n), l1(n) satisfy

2 ≤ l0(n) < l1(n), (61)

while the constant δ ≥ 0 will be specified later on in each of the considered cases. Note that
(59) and (61) imply

n(0) ≥ 2. (62)

The definition of l0(n) implies

n
1

d1+d2 ≤ 2l0(n) ≤ cn
1

d1+d2 , (63)

while (60) and (61) give

c1 log(n+ 1) ≤ l0(n) < l1(n) ≤ c2 log(n+ 1). (64)

From the definition of l1(n) we conclude furthermore

2
d1+d2
d1

l0(n)
l0(n)

−σ1
d1 ≤ 2l1(n) < 2

d1+d2
d1

l0(n)+1
l0(n)

−σ1
d1 . (65)

Combining this with (63) and (64), we arrive at

c3n
1
d1 (log(n+ 1))

−σ1
d1 ≤ 2l1(n) ≤ c4n

1
d1 (log(n+ 1))

−σ1
d1 . (66)
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Also note that by (59)

l1(n) ≤ d1 + d2

d1

l0(n), with equality if σ1 = 0. (67)

We begin with the non-adaptive setting, where we use Proposition 3.1 with

Al,ω2 = A
(2)
nl(n),ω2

: L
N1,l,N2,l
p → L

N1,l
q (l0(n) ≤ l < l1(n))

standing for the algorithm from Proposition 2.1, N1,l, N2,l as given by (35), and we identify I1,l

with Z[1, N1,l] and I2,l with Z[1, N2,l]. According to (45), we define

A(4)
n,ω(f) = SPl0(n),ζ(ω1)f +

l1(n)−1∑
l=l0(n)

VlA
(2)
nl(n),ω2

(Ul,ζ(ω1)f) (ω = (ω1, ω2)).

Let us check the measurability condition for
(
A

(4)
n,ω

)
ω∈Ω

, that is (46) for % = ζ. It follows from

the definition of A
(2)
nl(n),ω2

(in Part I) that the mapping

Ω2 3 ω2 → A
(2)
nl(n),ω2

∈ L
(
L
N1,l,N2,l
p , L

N1,l
q

)
(68)

is a random variable taking only a finite number of values and that card
(
A

(2)
nl(n),ω2

, g
)

neither
depends on ω2 nor on g. Consequently, the mappings

L
N1,l,N2,l
p × Ω2 3 (g, ω2)→

 card
(
A

(2)
nl(n),ω2

, g
)

A
(2)
nl(n),ω2

(g)
(69)

are B
(
L
N1,l,N2,l
p

)
× Σ2 measurable. Furthermore, for fixed f ∈ Wr

p(D) the mapping ω1 →
f(sli + 2−ltjk(ζ(ω1))) is Σ1-measurable. Consequently, by (38)

ω1 → Ulζ(ω1)f (70)

is Σ1-to-B
(
L
N1,l,N2,l
p

)
measurable. This implies that (46) holds, thus

(
A

(4)
n,ω

)
ω∈Ω

is a non-adaptive
randomized algorithm.

To state the next result, we set

β1 =

{
1 if r

d1
= 1− 1

p̄
+
(

1
p
− 1

q

)
+

0 otherwise,
(71)

and introduce for r ∈ N0, d1, d2 ∈ N, 1 ≤ p, q ≤ ∞ the following function of n ∈ N

Φ1(n) =


n
−r+( 1

p−
1
q )+

d1−(1− 1
p̄)d2

d1+d2 (log(n+ 1))σ1/2 if r
d1
> 1− 1

p̄
+
(

1
p
− 1

q

)
+

n
− r
d1

+( 1
p
− 1
q )+ (log(n+ 1))

σ1

(
r
d1
−( 1

p
− 1
q )+

)
if r

d1
≤ 1− 1

p̄
+
(

1
p
− 1

q

)
+
,

(72)

where we recall that σ1 was defined in (14).
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Proposition 4.1. Let r, d1, d2 ∈ N, 1 ≤ p, q ≤ ∞, 1 ≤ w ≤ p, w < ∞, and assume that (7)
holds. Then there are constants c1, c2 > 0 such that for all n ≥ n(0) and f ∈ Wr

p(D)(
E ‖Sf − A(4)

n,ω(f)‖wLq(D1)

)1/w

≤ c1Φ1(n)(log(n+ 1))β1 . (73)

Moreover,
card(A(4)

n,ω,Wr
p(D)) ≤ c2n(log(n+ 1))β1 (ω ∈ Ω). (74)

Proof. We fix n ∈ N, n ≥ n(0) and write shorthand l0 instead of l0(n) and respectively l1 and
nl. Taking into account that by (29) κ′ ≥ 2, we conclude from (60), (63), and (35) for l ≥ l0

nl ≤ 2(d1+d2)l0 < κ′2(d1+d2)l = N1,lN2,l

First we estimate the cardinality of A
(4)
n,ω. By (15) of Proposition 2.1 and (48) of Proposition

3.1,

card(A(4)
n,ω, BWr

p(D)) ≤ κ2(d1+d2)l0 + 2κ′κ′′
l1−1∑
l=l0

nl

≤ κ2(d1+d2)l0 + 2κ′κ′′
l1−1∑
l=l0

(
2(d1+d2)l0−δmin((l−l0),(l1−l)) + 1

)
≤

{
c2(d1+d2)l0l1 if δ = 0,

c2(d1+d2)l0 if δ > 0.
(75)

Furthermore, by (16) of Proposition 2.1,

2−rl sup
g∈L

N1,l,N2,l
p \{0}

(
‖g‖−w

L
N1,l,N2,l
p

E2‖SN1,l,N2,lg − A(2)
nl,ω2

g‖w
L
N1,l
q

)1/w

≤ c2−rlN
( 1
p
− 1
q )+

+1− 1
p̄

1,l n
−(1− 1

p̄)
l (log(N1,l + 1))σ1/2 ≤ c2γ(l)+(1− 1

p̄)δmin((l−l0),(l1−l)) (76)

with

γ(l) = −rl +

((
1

p
− 1

q

)
+

+ 1− 1

p̄

)
d1l −

(
1− 1

p̄

)
(d1 + d2)l0 +

σ1

2
log l0. (77)

Note that γ(l) considered as a function of the real variable l, is linear, with constant (meaning
independent of n) ascent. Corollary 3.5 together with (19) and (76) gives

(
E ‖Sf − A(4)

n,ω(f)‖wLq(D1)

)1/w

≤ c2
−rl1+( 1

p
− 1
q )+

d1l1 + c

l1−1∑
l=l0

2γ(l)+(1− 1
p̄)δmin((l−l0),(l1−l)). (78)

Also observe that

γ(l) +

(
1− 1

p̄

)
δmin((l − l0), (l1 − l))

is continuous on [l0, l1] and linear on [l0, (l0 + l1)/2] and [(l0 + l1)/2, l1], also with constant ascent
on each of the intervals. Now we distinguish two cases.
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Case 1: Assume that
r

d1

> 1− 1

p̄
+

(
1

p
− 1

q

)
+

. (79)

Then γ(l) is a strictly decreasing function of l. So we can choose δ > 0 in such a way that also

γ(l) +

(
1− 1

p̄

)
δmin((l − l0), (l1 − l)) is a strictly decreasing function of l.

Consequently,

l1−1∑
l=l0

2γ(l)+(1− 1
p̄)δmin((l−l0),(l1−l)) ≤ c2γ(l0). (80)

We have

γ(l0) =

(
−r +

(
1

p
− 1

q

)
+

d1 −
(

1− 1

p̄

)
d2

)
l0 +

σ1

2
log l0. (81)

Note that by (59), (79), and (81)(
−r +

(
1

p
− 1

q

)
+

d1

)
l1 ≤ −

(
r −

(
1

p
− 1

q

)
+

d1

)
(d1 + d2)l0 − σ1 log l0

d1

+ c

≤ −
(
r −

(
1

p
− 1

q

)
+

d1

)
l0 −

(
r −

(
1

p
− 1

q

)
+

d1

)
d2l0 − σ1 log l0

d1

+ c

≤ −
(
r −

(
1

p
− 1

q

)
+

d1

)
l0 −

(
1− 1

p̄

)
(d2l0 − σ1 log l0) + c ≤ γ(l0) + c,

which together with (78) and (80) yields

sup
f∈BWrp(D)

(
E ‖Sf − A(4)

n,ωf‖wLp(D1)

)1/w

≤ c2γ(l0) ≤ c2

(
−r+( 1

p
− 1
q )+

d1−(1− 1
p̄)d2

)
l0+

σ1
2

log l0 ≤ cn
−
r−( 1

p−
1
q )+

d1+(1− 1
p̄)d2

d1+d2 (log(n+ 1))
σ1
2 ,

the last relation being a consquence of (63) and (64). Moreover, (75) and and (63) imply

card(A
(4)
n,ω, BWr

p(D)) ≤ cn. This proves (73) and (74) in the first case.
Case 2: Now let

r

d1

≤ 1− 1

p̄
+

(
1

p
− 1

q

)
+

. (82)

If equality holds in (82), or equivalently, γ(l0) = γ(l1), we set δ = 0, otherwise by (77), γ(l) is
a strictly increasing function of l. Here we choose δ > 0 in such a way that also

γ(l) +

(
1− 1

p̄

)
δmin((l − l0), (l1 − l)) is a strictly increasing function of l.

This implies

l1−1∑
l=l0

2γ(l)+(1− 1
p̄)δmin((l−l0),(l1−l)) ≤ clβ1

1 2γ(l1). (83)
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Relation (77) together with (59) gives

γ(l1) = −rl1 +

(
1

p
− 1

q

)
+

d1l1

+

(
1− 1

p̄

)
d1l1 −

(
1− 1

p̄

)
(d1 + d2)l0 +

σ1

2
log l0

≤ −rl1 +

(
1

p
− 1

q

)
+

d1l1 + c, (84)

where we used that σ1 = 1 implies p̄ = 2. From (78), (83), and (84) we obtain

sup
f∈BWrp(D)

(
E ‖Sf − A(4)

n,ωf‖wLp(D1)

)1/w

≤ c 2

(
−r+( 1

p
− 1
q )+

d1

)
l1 + clβ1

1 2γ(l1). ≤ clβ1

1 2

(
−r+( 1

p
− 1
q )+

d1

)
l1

≤ cn
− r
d1

+( 1
p
− 1
q )+(log(n+ 1))

σ1

(
r
d1
−( 1

p
− 1
q )+

)
+β1 , (85)

where we also used (64) and (66). This proves (73) in the second case.

If r
d1
< 1− 1

p̄
+
(

1
p
− 1

q

)
+

, we have β1 = 0, δ > 0, so by (75) and (63), card(A
(4)
n,ω, BWr

p(D)) ≤ cn,

while if r
d1

= 1 − 1
p̄

+
(

1
p
− 1

q

)
+

, we have β1 = 1, δ = 0, so (75) together with (64) and (66)

gives card(A
(4)
n,ω, BWr

p(D)) ≤ cn log(n+ 1), which proves (74) also in the second case.

Now we turn to the adaptive case and 2 < p < q. For n ∈ N, n ≥ n(0) let l0(n), l1(n), and
nl(n) be given by (59) and (60). Here we define for l0(n) ≤ l < l1(n)

ml = dc(1) log(N1,l +N2,l)e,

where c(1) stands for the constant c1 from Proposition 2.2 and N1,l, N2,l from (35). It follows
that

ml ≤ cl.

We use (45) with

Al,ω2 = A
(3)
nl(n),ml,ω2

: L
N1,l,N2,l
p → L

N1,l
q

the algorithm from Proposition 2.2 and define an adaptive algorithm

A(5)
n,ω(f) = SPl0(n),ζ(ω1)f +

l1(n)−1∑
l=l0(n)

VlA
(3)
nl(n),ml,ω2

(Ul,ζ(ω1)f) (ω = (ω1, ω2)).

Similarly to the non-adaptive case (68)–(70) let us verify the measurability condition for(
A

(5)
n,ω

)
ω∈Ω

. Here we note that the definition of A
(3)
nl(n),ml,ω2

in Part I implies that

Ω2 3 ω2 → A
(3)
nl(n),ml,ω2

∈ F
(
L
N1,l,N2,l
p , L

N1,l
q

)
(86)

is a random variable taking only a finite number of values and that for each ω2 the mappings

L
N1,l,N2,l
p 3 g →

 card(A
(3)
nl(n),ml,ω2

, g)

A
(3)
nl(n),ml,ω2

(g)
(87)



19

are B
(
L
N1,l,N2,l
p

)
-measurable. Consequently, the mappings

L
N1,l,N2,l
p × Ω2 3 (g, ω2)→

 card(A
(3)
nl(n),ml,ω2

, g)

A
(3)
nl(n),ml,ω2

(g)
(88)

are B
(
L
N1,l,N2,l
p

)
× Σ2-measurable. Now fix f ∈ Wr

p(D). As already mentioned, see (70), the

mapping ω1 → Ulζ(ω1)f is Σ1-measurable, implying that (46) is satisfied, hence
(
A

(5)
n,ω

)
ω∈Ω

is an
adaptive randomized algorithm.

For r ∈ N0, d1, d2 ∈ N, 2 < p < q ≤ ∞ we define the function Φ2(n) of n ∈ N as follows. If(
1

2
− 1

p

)
d2 >

(
1

p
− 1

q

)
d1, (89)

then we set

Φ2(n) =


n
−r− 1

2 d2
d1+d2 if r

d1
>
(

1
p
− 1

q

)(
d1

d2
+ 1
)

+ 1
2

n
− r
d1

+ 1
p
− 1
q if r

d1
≤
(

1
p
− 1

q

)(
d1

d2
+ 1
)

+ 1
2
,

(90)

while if (
1

2
− 1

p

)
d2 ≤

(
1

p
− 1

q

)
d1, (91)

we define

Φ2(n) =

 n
−r+
(

1
p−

1
q

)
d1−
(

1− 1
p

)
d2

d1+d2 if r
d1
> 1− 1

q

n
− r
d1

+ 1
p
− 1
q if r

d1
≤ 1− 1

q
.

(92)

The following observations, which are easily checked, complement the definition of Φ2 and
will be of help in the sequel:

−r − 1
2
d2

d1 + d2

≥
−r +

(
1
p
− 1

q

)
d1 −

(
1− 1

p

)
d2

d1 + d2

iff 1− 1

q
≥
(

1

p
− 1

q

)(
d1

d2

+ 1

)
+

1

2

iff

(
1

2
− 1

p

)
d2 ≥

(
1

p
− 1

q

)
d1 (93)

−r − 1
2
d2

d1 + d2

≥ − r

d1

+
1

p
− 1

q
iff

r

d1

≥
(

1

p
− 1

q

)(
d1

d2

+ 1

)
+

1

2
(94)

−r +
(

1
p
− 1

q

)
d1 −

(
1− 1

p

)
d2

d1 + d2

≥ − r

d1

+
1

p
− 1

q
iff

r

d1

≥ 1− 1

q
, (95)

where, moreover, in each of (93), (94), and (95) equality holds in one relation iff it holds all
relations. This implies, in particular, that the passage from one rate to another in (90) and
(92) is ”continuous”, or in other words, we may replace ”>” by ”≥” in (89), (90), and (92)
without producing a contradiction.
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Finally we put

β2 =

{
1 if

(
1
2
− 1

p

)
d2 ≤

(
1
p
− 1

q

)
d1 and r

d1
= 1− 1

q

0 otherwise
(96)

and recall that n(0) was defined before (61).

Proposition 4.2. Let r, d1, d2 ∈ N, 2 < p < q ≤ ∞, 1 ≤ w ≤ p, w <∞, and assume that (7)
holds. Then there are constants c1, c2 > 0 such that for all n ≥ n(0) and f ∈ Wr

p(D)(
E ‖Sf − A(5)

n,ω(f)‖wLq(D1)

)1/w

≤ c1Φ2 (n) (log(n+ 1))β2 . (97)

Moreover,
card(A(5)

n,ω,Wr
p(D)) ≤ c2n(log(n+ 1))β2+1. (98)

Proof. By (17) of Proposition 2.2 and (48) of Proposition 3.1, the cardinality of A
(5)
n,ω satisfies.

card(A(5)
n,ω, BWr

p(D)) ≤ κ2(d1+d2)l0 + 6κ′κ′′
l1−1∑
l=l0

mlnl

≤ c2(d1+d2)l0 + cl1

l1−1∑
l=l0

(
2(d1+d2)l0−δmin((l−l0),(l1−l)) + 1

)
≤

{
c2(d1+d2)l0l21 if δ = 0,

c2(d1+d2)l0l1 if δ > 0.
(99)

Moreover, by (18) of Proposition 2.2,

2−rl sup
g∈L

N1,l,N2,l
p \{0}

(
‖g‖−w

L
N1,l,N2,l
p

E2‖SN1,l,N2,lg − A(3)
nl,mlω2

g‖w
L
N1,l
q

)1/w

≤ c2−rl

(
N

1/p−1/q
1,l

⌈
nl
N1,l

⌉−(1−1/p)

+

⌈
nl
N1,l

⌉−1/2
)
‖f‖

L
N1,l,N2,l
p

≤ c2−rl
(
N

1−1/q
1,l n

−1+1/p
l +N

1/2
1,l n

−1/2
l

)
≤ c2γ1(l)+(1− 1

p)δmin((l−l0),(l1−l)) + c2γ2(l)+ 1
2
δmin((l−l0),(l1−l)), (100)

where we defined

γ1(l) =

(
−r +

(
1− 1

q

)
d1

)
l −
(

1− 1

p

)
(d1 + d2)l0

γ2(l) =

(
−r +

1

2
d1

)
l − 1

2
(d1 + d2)l0.

Note that we have σ1 = 0 and due to (67), l1 = (d1+d2)l0
d1

. Therefore the values at the endpoints
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of the interval [l0, l1] are

γ1(l0) =

(
−r +

(
1

p
− 1

q

)
d1 −

(
1− 1

p

)
d2

)
l0 (101)

γ1(l1) =

(
−rd1 + d2

d1

+

(
1

p
− 1

q

)
(d1 + d2)

)
l0 (102)

γ2(l0) =

(
−r − d2

2

)
l0 (103)

γ2(l1) = −rd1 + d2

d1

l0. (104)

Observe that γ1(l0), γ1(l1), γ2(l0), γ2(l1) are constant multiples of l0 and, since by (61) l0 6= 0,
we have

γ1(l1) > γ2(l1).

It follows from (93)–(95) that

γ2(l0) ≥ γ1(l0) iff

(
1

2
− 1

p

)
d2 ≥

(
1

p
− 1

q

)
d1

γ2(l0) ≥ γ1(l1) iff
r

d1

≥
(

1

p
− 1

q

)(
d1

d2

+ 1

)
+

1

2

γ1(l0) ≥ γ1(l1) iff
r

d1

≥ 1− 1

q
,

where, moreover, in each line equality holds in the left-hand relation iff it holds in the right-hand
relation. We obtain from Corollary 3.5 together with (19), (100), and (102)

sup
f∈BWrp(D)

(
E ‖Sf − A(5)

n,ω(f)‖wLp(D1)

)1/w

≤ c 2γ1(l1) + c

l1−1∑
l=l0

2γ1(l)+(1− 1
p)δmin((l−l0),(l1−l)) + c

l1−1∑
l=l0

2γ2(l)+ 1
2
δmin((l−l0),(l1−l)). (105)

Case 1: Suppose that (
1

2
− 1

p

)
d2 >

(
1

p
− 1

q

)
d1, (106)

hence γ2(l0) > γ1(l0).
Case 1.1: If, moreover,

r

d1

>

(
1

p
− 1

q

)(
d1

d2

+ 1

)
+

1

2
, (107)

then γ2(l0) > γ1(l1), thus summarizing, we have

γ2(l0) > γ1(l0), γ2(l0) > γ1(l1) > γ2(l1).

It follows that γ2(l) is a strictly decreasing function of l and

γ2(l0)−max(γ1(l0), γ1(l1)) > cl0
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for some constant c > 0, so we can choose δ > 0 in such a way that also

γ2(l) +
1

2
δmin((l − l0), (l1 − l)) is a strictly decreasing function of l

and

γ1(l) +

(
1− 1

p

)
δmin((l − l0), (l1 − l)) ≤ γ2(l0)− δl0 (l0 ≤ l ≤ l1).

We obtain from (105)

sup
f∈BWrp(D)

(
E ‖Sf − A(5)

n,ω(f)‖wLp(D1)

)1/w

≤ c 2γ2(l0) ≤ cn
−r− d22
d1+d2 .

Case 1.2: On the other hand, if (106) holds and

r

d1

≤
(

1

p
− 1

q

)(
d1

d2

+ 1

)
+

1

2
,

then γ2(l0) ≤ γ1(l1), hence

γ1(l1) ≥ γ2(l0) > γ1(l0), γ1(l1) > γ2(l1).

If γ1(l1) = γ2(l0), then γ1(l1) > γ1(l0) and γ2(l0) > γ2(l1), and we choose δ > 0 so that

γ1(l) +

(
1− 1

p

)
δmin((l − l0), (l1 − l)) is a strictly increasing function of l (108)

γ2(l) +
1

2
δmin((l − l0), (l1 − l)) is a strictly decreasing function of l. (109)

If γ1(l1) > γ2(l0), then we define δ > 0 in such a way that (108) holds and

γ2(l) +
1

2
δmin((l − l0), (l1 − l)) ≤ γ1(l1)− δl0 (l0 ≤ l ≤ l1).

In each case we obtain from (105)

sup
f∈BWrp(D)

(
E ‖Sf − A(5)

n,ω(f)‖wLp(D1)

)1/w

≤ c 2γ1(l1) ≤ cn
− r
d1

+ 1
p
− 1
q .

Case 2: Now assume (
1

2
− 1

p

)
d2 ≤

(
1

p
− 1

q

)
d1, (110)

hence γ1(l0) ≥ γ2(l0).
Case 2.1: If, furthermore,

r

d1

> 1− 1

q
,

then γ1(l0) > γ1(l1), so altogether

γ1(l0) ≥ γ2(l0), γ1(l0) > γ1(l1) > γ2(l1).
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If γ1(l0) = γ2(l0), then γ2(l0) > γ2(l1), meaning that both γ1(l) and γ2(l) are strictly decreasing,
and we choose δ > 0 so that

γ1(l) +

(
1− 1

p

)
δmin((l − l0), (l1 − l)) is a strictly decreasing function of l (111)

γ2(l) +
1

2
δmin((l − l0), (l1 − l)) is a strictly decreasing function of l.

If γ1(l0) > γ2(l0), we choose δ > 0 in such a way that (111) holds and

γ2(l) +
1

2
δmin((l − l0), (l1 − l)) ≤ γ1(l0)− δl0 (l0 ≤ l ≤ l1).

We conclude

sup
f∈BWrp(D)

(
E ‖Sf − A(5)

n,ω(f)‖wLp(D1)

)1/w

≤ c 2γ1(l0) ≤ cn
−r+
(

1
p−

1
q

)
d1−
(

1− 1
p

)
d2

d1+d2 .

Case 2.2: On the other hand, if (110) holds and

r

d1

≤ 1− 1

q
, (112)

then γ1(l0) ≤ γ1(l1), thus

γ1(l1) ≥ γ1(l0) ≥ γ2(l0), γ1(l1) > γ2(l1).

If γ1(l1) = γ1(l0), then equality holds in (112) and we have β2 = 1, so we set δ = 0. If
γ1(l1) > γ1(l0), we choose δ > 0 so that

γ1(l) +

(
1− 1

p

)
δmin((l − l0), (l1 − l)) is a strictly increasing function of l,

γ2(l) +
1

2
δmin((l − l0), (l1 − l)) ≤ γ1(l1)− δl0 (l0 ≤ l ≤ l1).

In both cases (105) gives

sup
f∈BWrp(D)

(
E ‖Sf − A(5)

n,ω(f)‖wLp(D1)

)1/w

≤ clβ2

1 2γ1(l1) ≤ cn
− r
d1

+ 1
p
− 1
q (log(n+ 1))β2 .

Finally note that δ = 0 only in the case 2.2 with γ1(l1) = γ1(l0), or equivalently, if β2 = 1.
Therefore by (99)

card(A(5)
n,ω, BWr

p(D)) ≤ cn(log(n+ 1))β2+1,

which is (98).
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5 Lower Bounds and Complexity

The following theorem extends Wiegand’s Theorem 5.1 of [14] to the case of p 6= q. Furthermore,
Wiegand considered the randomized setting only for the case that W r

p (D) is embedded into
C(D). We provide an analysis of the randomized setting for the case of non-embedding, as
well. Recall that the functions Φ1,Φ2 where defined in (72) and (89)–(92), and the parameters
β1, β2 in (71) and (96), respectively. Furthermore, put

σ2 =

{
1 if

((
1
2
− 1

p

)
d2 ≥

(
1
p
− 1

q

)
d1

)
∧
(
r
d1
≥
(

1
p
− 1

q

)(
d1

d2
+ 1
)

+ 1
2

)
∧ (q =∞)

0 otherwise.
(113)

Theorem 5.1. Let d1, d2 ∈ N, r ∈ N0, 1 ≤ p, q ≤ ∞ and assume that (6) is satisfied. Then
there are constants c1−8 > 0 such that the following hold for all n ∈ N. If (p ≤ 2) ∨ (p ≥ q),
then

c1Φ1(n) ≤ eran
n (S,BWr

p(D), Lq(D1))

≤ eran−non
n (S,BWr

p(D), Lq(D1)) ≤ c2Φ1(n)(log(n+ 1))β1(2− 1
p̄). (114)

On the other hand, if 2 < p < q, then in the non-adaptive setting

c3Φ1(n) ≤ eran−non
n (S,BWr

p(D), Lq(D1)) ≤ c4Φ1(n)(log(n+ 1))β1(2− 1
p), (115)

while in the adaptive setting

c5Φ2(n)(log(n+ 1))σ2/2 ≤ eran
n (S,BWr

p(D), Lq(D1))

≤ c6Φ2

(
n

log(n+ 1)

)
(log(n+ 1))β2(2− 1

p). (116)

Finally, if the embedding condition (3) is satisfied, then in the deterministic setting

c7n
−r+d1( 1

p−
1
q )+

d1+d2 ≤ edet
n (S,BWr

p(D), Lq(D1)) ≤ c8n
−r+d1( 1

p−
1
q )+

d1+d2 . (117)

Proof. For n < n(0) the upper bounds are trivial, while If r
d1

=
(

1
p
− 1

q

)
+

, we have by (72)

Φ1(n) = 1 and for 2 < p < q by (90) and (92) also Φ2(n) = 1 for all n ∈ N, hence all upper

bounds are trivial, so we assume for the proof of the upper bounds r
d1
>
(

1
p
− 1

q

)
+

and in

particular r ≥ 1.
The upper bound for the deterministic setting follows directly from Corollary 3.5 with % = ζ0

and l1 = l0 =
⌈

logn
d1+d2

⌉
, thus, the algorithm in (45) consists only of the deterministic SPl0,ζ0 .

To show the upper bounds in the randomized non-adaptive setting, we conclude from (73)
and (74) of Proposition 4.1 that

eran−non

dcn(log(n+1))β1e(S,BWr
p(D), Lq(D1)) ≤ cΦ1(n)(log(n+ 1))β1 . (118)

This directly yields (114) and (115) for the case β1 = 0. If β1 = 1, we have by (71),

r

d1

= 1− 1

p̄
+

(
1

p
− 1

q

)
+

(119)
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and argue as follows. Let c(2) stand for the constant c2 from Proposition 4.1 and set

n(1) = dc(2)n(0) log(n(0) + 1)e.

Then for each n ∈ N, n ≥ n(1) there is a unique k(n) ≥ n(0) so that

dc(2)k(n) log(k(n) + 1)e ≤ n < dc(2)(k(n) + 1) log(k(n) + 2)e. (120)

Since by (62) n(0) ≥ 2, there are constants c1−4 > 0 such that for all n ∈ N, n ≥ n(1)

c1 log(n+ 1) ≤ log(k(n) + 1) ≤ c2 log(n+ 1) (121)

c3n(log(n+ 1))−1 ≤ k(n) ≤ c4n(log(n+ 1))−1. (122)

By (74) of Proposition 4.1

card(A
(4)
k(n),ω,W

r
p(D)) ≤ c2k(n)(log(k(n) + 1))

and therefore monotonicity of the minimal errors, (120), (73), (119), (121), and (122) imply

eran−non
n (S,BWr

p(D), Lq(D1))

≤ eran−non

dc(2)k(n)(log(k(n)+1))β1e(S,BWr
p(D), Lq(D1)) ≤ cΦ1(k(n))(log(k(n) + 1))β1

≤ ck(n)
− r
d1

+( 1
p
− 1
q )+(log(k(n) + 1))

(σ1+1)
(
r
d1
−( 1

p
− 1
q )+

)
+1

≤ cn
− r
d1

+( 1
p
− 1
q )+(log(n+ 1))

σ1

(
r
d1
−( 1

p
− 1
q )+

)
+1

= cΦ1(n)(log(n+ 1))
r
d1
−( 1

p
− 1
q )+

+1
= cΦ1(n)(log(n+ 1))2− 1

p̄ .

This completes the proof of the upper bounds of (114) and (115) for n ≥ n(1), for n < n(1)
they follow trivially from the continuity of S.

In the adaptive case we argue similarly. Let c(3) denote the constant c2 from Proposition
4.2. Setting

n(2) = dc(3)n(0)(log(n(0) + 1))β2+1e,

it follows that for each n ∈ N with n ≥ n(2) there is a unique k(n) ≥ n(0) so that⌈
c(3)k(n)(log(k(n) + 1))β2+1

⌉
≤ n <

⌈
c(3)(k(n) + 1)(log(k(n) + 2))β2+1

⌉
. (123)

Furthermore there are constants c1−4 > 0 such that

c1 log(n+ 1) ≤ log(k(n) + 1) ≤ c2 log(n+ 1) (124)

c3n(log(n+ 1))−(β2+1) ≤ k(n) ≤ c4n(log(n+ 1))−(β2+1). (125)

By (98) of Proposition 4.2

card(A
(5)
k(n),ω,W

r
p(D)) ≤ c2k(n)(log(k(n) + 1))β2+1

and therefore monotonicity of the minimal errors, (123) and (97) imply

eran
n (S,BWr

p(D), Lq(D1))

≤ eran

dc(3)k(n)(log(k(n)+1))β2+1e(S,BWr
p(D), Lq(D1)) ≤ cΦ2(k(n))(log(k(n) + 1))β2 . (126)
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If β2 = 0, this together with (125) gives

eran
n (S,BWr

p(D), Lq(D1)) ≤ cΦ2

(
n

log(n+ 1)

)
.

If β2 = 1, it follows from (92) and (96) that

Φ2 (k(n)) = k(n)
− r
d1

+ 1
p
− 1
q ,

which combined with (124), (125), and (126) yields

eran
n (S,BWr

p(D), Lq(D1)) ≤ ck(n)
− r
d1

+ 1
p
− 1
q log(k(n) + 1)

≤ cn
− r
d1

+ 1
p
− 1
q (log(n+ 1))

2
(
r
d1
− 1
p

+ 1
q

)
+1

= cΦ2

(
n

log(n+ 1)

)
(log(n+ 1))

r
d1
− 1
p

+ 1
q

+1
,

which completes the proof of (116) for n ≥ n(2), since by (96) β2 = 1 implies r
d1

= 1− 1
q
. The

case n < n(2) is trivial.

Now we prove the lower bounds. For ι = 1, 2 let ψ(ι) be a C∞ function on Rdι with
supp ψ(ι) ⊂ (0, 1)dι and

τι :=

∫
Dι

ψ(ι)(t) dt 6= 0.

For n ≥ n(3) we define

l0(n) =

⌈
log n− log c(0) + 1

d1 + d2

⌉
, l1(n) =

⌈
(d1 + d2)l0(n)− σ1 log l0(n)

d1

⌉
(127)

where c(0) stands for the constant c0 from Proposition 2.3, while the constant n(3) ∈ N is
chosen in such a way that for n ≥ n(3)

2 ≤ l0(n) < l1(n). (128)

The lower bounds for n < n(3) follow by monotonicity from those for n ≥ n(3), so in the sequel
we assume n ≥ n(3). Similar to (63)–(66) we derive from (127) and (128)

c(0)
− 1
d1+d2 n

1
d1+d2 < 2l0(n) ≤ cn

1
d1+d2 , (129)

c1 log(n+ 1) ≤ l0(n) < l1(n) ≤ c2 log(n+ 1). (130)

c3n
1
d1 (log(n+ 1))

−σ1
d1 ≤ 2l1(n) ≤ c4n

1
d1 (log(n+ 1))

−σ1
d1 . (131)

Let l ∈ {l0(n), l1(n)}. We put
N1,l = 2d1l, N2,l = 2d2l (132)

and conclude from (129) and (128) that

n < c(0)2(d1+d2)l0(n) = c(0)N1,l0(n)N2,l0(n) < N1,l1(n)N2,l1(n). (133)

Furthermore, from (129)–(132) we obtain

c1n
d1

d1+d2 ≤ N1,l0(n) ≤ c2n
d1

d1+d2 , c1n(log(n+ 1))−σ1 ≤ N1,l1(n) ≤ c2n(log(n+ 1))−σ1 . (134)
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Put for 1 ≤ i1 ≤ 2d1l and 1 ≤ i2 ≤ 2d2l

ψ
(1)
li1

= R
(1)
li1
ψ(1), ψ

(2)
li2

= R
(2)
li2
ψ(2),

with R
(1)
li and R

(2)
lj as defined before (see (24)), and

ψli(s, t) = ψ
(1)
li1

(s)ψ
(2)
li2

(t) (i = 2d2l(i1 − 1) + i2, s ∈ [0, 1]d1 , t ∈ [0, 1]d2).

We have

(Sψli)(s) =

∫
D

(2)
li2

ψli(s, t) dt = τ2N
−1
2,l ψ

(1)
li1

(s) (s ∈ D1), (135)

‖ψli‖Wr
p(D) ≤ c2rl−(d1+d2)l/p = c2rl(N1,lN2,l)

−1/p. (136)

Define

Γl : L
N1,l,N2,l
p →Wr

p(D), Γlf =

N1,lN2,l∑
i=1

f(i)ψli, (137)

Ψl : Lq(D1)→ L
N1,l
q , (Ψlg)(i1) = N1,l

∫
D

(1)
li1

g(s)ds (1 ≤ i1 ≤ N1,l). (138)

Then
‖Γl : L

N1,l,N2,l
p →Wr

p(D)‖ ≤ c2rl, ‖Ψl : Lq(D1)→ L
N1,l
q ‖ ≤ c. (139)

Indeed, by (136), for p <∞

‖Γlf‖Wr
p(D) =

N1,lN2,l∑
i=1

|f(i)|p‖ψli‖pWr
p(D)

1/p

≤ c2rl‖f‖
L
N1,l,N2,l
p

,

and by Hölder’s inequality, for q <∞.

‖Ψlg‖q
L
N1,l
q

= N q−1
1,l

N1,l∑
i1=1

∣∣∣∣ ∫
D

(1)
li1

g(s)ds

∣∣∣∣q

≤ N q−1
1,l

N1,l∑
i1=1

∫
D

(1)
li1

|g(s)|qds
∣∣D(1)

li1

∣∣q−1
= ‖g‖qLq(D1).

The cases p = ∞ and q = ∞ are analogous. Moreover, from (135), (137), and (138) we
conclude, identifying i with (i1, i2),

ΨlSΓlf = ΨlS

N1,l∑
i1=1

N2,l∑
i2=1

f(i1, i2)ψlij = Ψl

N1,l∑
i=1

τ2N
−1
2,l

N2,l∑
j=1

f(i, j)

ψ
(1)
li

= τ1τ2

N1,l∑
i1=1

N−1
2,l

N2,l∑
i2=1

f(i1, i2)

 ei = τ1τ2S
N1,l,N2,l(f), (140)
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with ei the unit vectors in KN1,l . By (137)–(139), ΨlSΓl reduces to S and

eset
n (ΨlSΓl, B

L
N1,l,N2,l
p

, L
N1,l
q ) ≤ eset

n (S, c2rlBWr
p(D), Lq(D1))

= c2rleset
n (S,BWr

p(D), Lq(D1)), (141)

where set ∈ {det, det–non, ran, ran–non}, see [5], Proposition 1, for details on reduction. These
results were shown in [5] for the adaptive setting. The non-adaptive case is much easier,
essentially straight-forward. Combining (140) and (141), we get

eset
n (S,BWr

p(D), Lq(D1)) ≥ c 2−rleset
n (SN1,l,N2,l , B

L
N1,l,N2,l
p

, L
N1,l
q ). (142)

We conclude from (20) and (22) of Proposition 2.3 and (133) that for l ∈ {l0(n), l1(n)}
eset1
n (S,BWr

p(D), Lq(D1))

≥ c 2−rlN
(1/p−1/q)+

1,l

⌈
n

N1,l

⌉−(1−1/p̄)(
min

(
log(N1,l + 1),

⌈
n

N1,l

⌉))σ1/2

, (143)

where
set1 ∈ {ran, ran–non} if (p ≤ 2) ∨ (p ≥ q)

set1 = ran–non if 2 < p < q.

Then (132) and (134) imply

min

(
log(N1,l0(n) + 1),

⌈
n

N1,l0(n)

⌉)
≥ cmin

(
l0(n), n

d2
d1+d2

)
≥ c log(n+ 1), (144)

min

(
log(N1,l1(n) + 1),

⌈
n

N1,l1(n)

⌉)
≥ cmin

(
l1(n), (log(n+ 1))σ1

)
≥ c(log(n+ 1))σ1 . (145)

From (143), (134), (144), (145), and (72), we obtain

eset1
n (S,BWr

p(D), Lq(D1)) ≥ cn
−
r−( 1

p−
1
q )+

d1+(1− 1
p̄)d2

d1+d2 (log(n+ 1))
σ1
2

+cn
− r
d1

+( 1
p
− 1
q )+ (log(n+ 1))

σ1

(
r
d1
−( 1

p
− 1
q )+
−(1− 1

p̄)+ 1
2

)
≥ cΦ1(n),

since σ1 = 1 implies p̄ = 2. This proves the lower bounds in (114) and (115).
Now we turn to the adaptive randomized setting in the case 2 < p < q, so σ1 = 0. Here

(21) of Proposition 2.3, (133), and (142) give for l ∈ {l0(n), l1(n)}
eran
n (S,BWr

p(D), Lq(D1))

≥ c2−rlN
1/p−1/q
1,l

⌈
n

N1,l

⌉−(1−1/p)

+ c2−rl
⌈
n

N1,l

⌉−1/2

(log(N1,l + 1))δq,∞/2

and therefore, using (134),

eran
n (S,BWr

p(D), Lq(D1))

≥ c 2−rl0(n)N
1/p−1/q
1,l0(n)

⌈
n

N1,l0(n)

⌉−(1−1/p)

+ c 2−rl0(n)

⌈
n

N1,l0(n)

⌉−1/2 (
log(N1,l0(n) + 1)

)δq,∞/2
+c 2−rl1(n)N

1/p−1/q
1,l1(n)

⌈
n

N1,l1(n)

⌉−(1−1/p)

+ c 2−rl1(n)

⌈
n

N1,l1(n)

⌉−1/2 (
log(N1,l1(n) + 1)

)δq,∞/2
≥ cn

−r+
(

1
p−

1
q

)
d1−
(

1− 1
p

)
d2

d1+d2 + cn
−r− 1

2 d2
d1+d2 (log(n+ 1))δq,∞/2 + cn

− r
d1

+ 1
p
− 1
q ≥ cΦ2(n), (146)
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which is the lower bound of (116) for σ2 = 0. Now assume σ2 = 1, which by (113) implies
q =∞ and ((

1

2
− 1

p

)
d2 ≥

(
1

p
− 1

q

)
d1

)
∧
(
r

d1

≥
(

1

p
− 1

q

)(
d1

d2

+ 1

)
+

1

2

)
. (147)

As mentioned after relation (95), relations (89) and (90) also hold with ”>” replaced by ”≥”

so we conclude from them and (147) that Φ2(n) = n
−r− 1

2 d2
d1+d2 and therefore from (146)

eran
n (S,BWr

p(D), Lq(D1)) ≥ cn
−r− 1

2 d2
d1+d2 (log(n+ 1))1/2 ≥ cΦ2(n)(log(n+ 1))1/2,

showing (116) also for the case σ2 = 1.
In the deterministic case we have by (142), (23), (129), and (134)

edet
n (S,BWr

p(D), Lq(D1)) ≥ c 2−rl0(n)N
(1/p−1/q)+

1,l0(n) ≥ cn
−r+d1( 1

p−
1
q )+

d1+d2 ,

which is the lower bound of (117). This completes the proof of the lower bounds and thus of
the theorem.

6 Speedup

In this section we assume that r ∈ N0, d1, d2 ∈ N, 2 < p < q ≤ ∞ and (6) is satisfied. As in
Part I we want to determine the widest gap between non-adaptive and adaptive randomized
minimal errors. We define the gap as

γ(n; r, p, q, d1, d2) =
eran−non
n (S,BWr

p(D), Lq(D1))

eran
n (S,BWr

p(D), Lq(D1))

and the principal exponent of γ(n; r, p, q, d1, d2):

θ(r, p, q, d1, d2) = lim
n→∞

log γ(n; r, p, q, d1, d2)

log n
. (148)

Corollary 6.1. Under the assumptions above the limit in (148) exists and

max θ(r, p, q, d1, d2) =
1

8
,

where the maximum is taken over all r, d1, d2, p, q fulfilling the assumption. The maximum is
attained iff

p = 4, q =∞, r ≥ d1 = d2. (149)

In this case there are constants c1, c2 > 0 such that for all n ∈ N

c1n
1
8 (log(n+ 1))−

5
2 ≤ γ (n; r, 4,∞, d1, d1) ≤ c2n

1
8 (log(n+ 1))−

1
2 if r = d1 (150)

c1n
1
8 (log(n+ 1))

− r
2d1
− 1

4 ≤ γ (n; r, 4,∞, d1, d1) ≤ c2n
1
8 (log(n+ 1))−

1
2 if r > d1. (151)
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Proof. By Theorem 5.1 we have

c1
Φ1(n)

Φ2

(
n

log(n+1)

)
(log(n+ 1))β2(2− 1

p)
≤ γ(n) ≤ c2

Φ1(n)(log(n+ 1))β1(2− 1
p)

Φ2(n)(log(n+ 1))σ2/2
, (152)

which together with the definitions (72), (90), and (92) of Φ1 and Φ2 shows that the limit in
(148) exists. Now we determine θ. First we assume (89), which is equivalent to

d1 + d2

d1

>

1
2
− 1

p
+ 1

p
− 1

q

1
2
− 1

p

=

1
2
− 1

q

1
2
− 1

p

. (153)

Then (72), (90), and (152) imply the following.

If
r

d1

≤ 1

p
− 1

q
+

1

2
, then θ = 0,

if
1

p
− 1

q
+

1

2
<

r

d1

≤
(

1

p
− 1

q

)(
d1

d2

+ 1

)
+

1

2
, then

θ =
−r +

(
1
p
− 1

q

)
d1 − d2

2

d1 + d2

−
(
− r

d1

+
1

p
− 1

q

)
=

(
r
d1
−
(

1
p
− 1

q
+ 1

2

))
d2

d1 + d2

,

if

(
1

p
− 1

q

)(
d1

d2

+ 1

)
+

1

2
<

r

d1

, then

θ =
−r +

(
1
p
− 1

q

)
d1 − d2

2

d1 + d2

−
−r − 1

2
d2

d1 + d2

=

(
1
p
− 1

q

)
d1

d1 + d2

.

Clearly,
r

d1

≤
(

1

p
− 1

q

)(
d1

d2

+ 1

)
+

1

2

implies (
r
d1
−
(

1
p
− 1

q
+ 1

2

))
d2

d1 + d2

≤

(
1
p
− 1

q

)
d1

d1 + d2

.

Consequently, taking into account (153), we obtain

θ ≤

(
1
p
− 1

q

)
d1

d1 + d2

<

(
1
p
− 1

q

)(
1
2
− 1

p

)
1
2
− 1

q

≤
1
2
− 1

q

4
≤ 1

8
. (154)

Now we assume (91), which is equivalent to

d1 + d2

d2

≥
1
2
− 1

q

1
p
− 1

q

.
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By (72), (92), and (152) the following is true.

If
r

d1

≤ 1

p
− 1

q
+

1

2
, then θ = 0,

if
1

p
− 1

q
+

1

2
<

r

d1

≤ 1− 1

q
, then

θ =
−r +

(
1
p
− 1

q

)
d1 − d2

2

d1 + d2

−
(
− r

d1

+
1

p
− 1

q

)
=

(
r
d1
−
(

1
p
− 1

q
+ 1

2

))
d2

d1 + d2

,

if 1− 1

q
<

r

d1

, then

θ =
−r +

(
1
p
− 1

q

)
d1 − d2

2

d1 + d2

−
−r +

(
1
p
− 1

q

)
d1 −

(
1− 1

p

)
d2

d1 + d2

=

(
1
2
− 1

p

)
d2

d1 + d2

.

For 1
p
− 1

q
+ 1

2
< r

d1
< 1− 1

q
we have

θ =

(
r
d1
−
(

1
p
− 1

q
+ 1

2

))
d2

d1 + d2

<

(
1
2
− 1

p

)
d2

d1 + d2

,

while for r
d1
≥ 1− 1

q

θ =

(
1
2
− 1

p

)
d2

d1 + d2

≤

(
1
2
− 1

p

)(
1
p
− 1

q

)
1
2
− 1

q

≤ 1

8
,

see (154). We conclude that the maximal value of θ is reached iff θ = 1
8

iff (149) holds.
So assume (149). Here we estimate the gap including log factors. By (14), (71), (96), and

(113) we have

σ1 = 0, β1 = 0, β2 =

{
1 if r = d1,
0 if r > d1,

σ2 = 1.

From (72) and (92) we conclude

Φ1(n) = n
− r

2d1
− 1

8 , Φ2(n) = n
− r

2d1
− 1

4 ,

and consequently

Φ1(n)

Φ2

(
n

log(n+1)

)
(log(n+ 1))β2(2− 1

p)
= n

1
8 (log(n+ 1))

− 7β2
4
− r

2d1
− 1

4

Φ1(n)(log(n+ 1))β1(2− 1
p)

Φ2(n)(log(n+ 1))σ2/2
= n

1
8 (log(n+ 1))−

1
2 .

This together with (152) yields (150) and (151).
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