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Abstract

We study the complexity of randomized computation of integrals depending on a
parameter, with integrands from Sobolev spaces. That is, for r,dy,do € N, 1 < p,q < o0,
Dy = [0,1]", and Dy = [0,1]% we are given f € W} (D1 x D) and we seck to approximate

Sf= f(s,t)dt (s € Dy),
Do

with error measured in the Ly(D;)-norm. Our results extend previous work of Heinrich
and Sindambiwe (J. Complexity, 15 (1999), 317-341) for p = ¢ = oo and Wiegand (Shaker
Verlag, 2006) for 1 < p = ¢ < co. Wiegand’s analysis was carried out under the assump-
tion that W (D1 x Ds) is continuously embedded in C(D;y x Dz) (embedding condition).
We also study the case that the embedding condition does not hold. For this purpose a
new ingredient is developed — a stochastic discretization technique.

The paper is based on Part I, where vector valued mean computation — the finite-
dimensional counterpart of parametric integration — was studied. In Part I a basic problem
of Information-Based Complexity on the power of adaption for linear problems in the
randomized setting was solved. Here a further aspect of this problem is settled.

1 Introduction

Parametric integration is the following problem. We are given a function f on D = Dy X Ds
and want to compute (approximately)

Sf= f(s,t)dt (s € Dy),
Do

that is, an integral which depends on a parameter (precise definitions are given below). Here
D, is the parameter domain and D, is the integration domain. If either of them becomes a
single point, we have the integration or the approximation problem, respectively. In general,
parametric integration is an intermediate problem between integration and approximation, and
as such, shows features of both and clarifies the passage from one to the other.



We consider parametric integration for Dy = [0,1]%, Dy = [0,1]%, f € W ([0,1]4+%),
the Sobolev space, and the target space (in which the error is measured) is L,([0,1]%). For
the first time parametric integration was studied from the point view of information-based
complexity theory in Heinrich, Sindambiwe [10], where the p = ¢ = oo case was settled. The
case 1 < p = ¢ < oo was studied by Wiegand in [14]. The present paper extends the above
results to the case p # ¢. Moreover, [14] was based on the assumption that W ([0, 1]%F%)
is continuously embedded into C([0,1]%%9)  the space of continuous functions (embedding
condition). Our analysis also covers the case of non-embedding.

A main tool is the discretization technique for problems with standard information, which
was developed in [3] and [4] for the analysis of integration and approximation in the quantum
setting of information-based complexity theory. It was also applied to construct Monte Carlo
methods for integration using few random bits in [11, 2, 14, 15]. This method reduces an infinite
dimensional problem to a series of its finite dimensional counterparts. It is deterministic and
needs the embedding condition. To get away from this assumption we develop here a stochastic
discretization technique which also covers the case of non-embedding.

In Part I the adaption problem in the randomized setting was settled: Is there a constant
¢ > 0 such that for all linear problems P = (F,G, S, K,A) and all n € N

en NS, F,G) < ce™ (S, F,G) 7

see [12], [13], and Part I for further references. It was shown in Part I that there is a sequence
of vector-valued mean computation problems P, (n € N) such that

e;an—non(5n7 Fn; Gn)

li = 00. 1
w8 FuGa) o

The results of the present paper imply that there is a single problem P such that

) eran—non(S’ F, G)
1 L = 00. 2
nhe e (S FLG) (2)

We show that the parametric integration problem with 2 < p < ¢ < oo has this property.
Moreover, there are instances of this problem where the quotient in (2), that is, the gap between
non-adaptive and adaptive randomized minimal errors is (up to log factors) of order n'/%. For
problems with larger gaps (in the sense of (1)) we refer to [9].

The paper is organized as follows: In Section 2 we present the needed prerequisites including
some results from Part I. In Section 3 we develop the randomized discretization technique (which
contains the deterministic one as a special case). This technique is used in Section 4 to set
up and analyze non-adaptive and adaptive algorithms for parametric integration with error of
optimal order (often up to logarithms). Lower bounds and the main theorem on the complexity
are proved in Section 5. The final Section 6 contains a discussion of the maximal gap between
non-adaptive and adaptive randomized algorithms.

2 Preliminaries

We denote N = {1,2,...}, Ny = NU{0}, and for N € N, Z[1, N] := {1,2,..., N}. The symbol
K stands for the scalar field R or C. We often use the same symbol ¢, ¢y, ¢y, ... for possibly
different constants, even if they appear in a sequence of relations. However, some constants



are supposed to have the same meaning throughout the paper — these are denoted by symbols
¢(0),¢(1),.... Throughout this paper log means log,. The unit ball of a normed or semi-normed
space X is denoted by By, the og-algebra of Borel subsets of a normed space X by B(X) and
the space of bounded linear operators from X to a normed space Y by L(X,Y).

Letd € N, D = [0,1]¢. By C(D) we denote the space of continuous functions on D, equipped
with the supremum norm. For 1 < p < oo let L,(D) be the space of equivalence classes of K-
valued Borel measurable functions which are p-integrable with respect to the Lebesgue measure,
endowed with the usual norm

L Uplf@Pd)T i p< oo
| fll L, ) = |
ess-sup;eplf(t)| if p=oo.

For r € N the Sobolev space W) (D) consists of all f € L,(D) such that for all
a=(ar,...,aq) € NI with |a] := Z?Zl a; < r, the generalized partial derivative 0“f belongs
to L,(D). The norm on W) (D) is defined by

i/p
Ifllwy o) = { <Z|a\§r ||3”f|lip(D)) if p<oo

maxXo|<, |0%f |y if p=oo0.

For r = 0 we set W] (D) = L,(D). We recall from [1], Th. 5.4, that W} (D) is continuously
embedded into C'(D) if and only if

p=1 and r/d>1
or (3)
l<p<oo and r/d>1/p

(embedding condition).

Now let 1 < p,q < o0, di,dy € Ny, with d = d; + d>. First assume dq,dy € N and let
Dy =[0,1]%, Dy = [0,1]%2, thus D = D; x D,. Consider the operator of parametric integration
S Wy (D) — Ly(Dy) defined by

(SF)(s) = : f(s,t)dt (s € Dy). (4)

We always assume d > 1, but we also want to include the border-line cases d; = 0 and dy = 0.
In the case of d, = 0 (¢« = 1,2) we let D, = {0} be the one-point-set. The integral over D,
as well as the space L,(D,) are considered as defined with respect to the trivial probability
measure on D, = {0}. In other words, for d; = 0 we have L,(D;) =K and S : W} (D) — K,

Sf = /D f(t)di

is the integration operator. It is well-defined and continuous for all » € Ny and 1 < p < oo.
If dy = 0 we have fD2 f(s)dt = f(s) and therefore S : W (D) — L,(D),

(5F)(s) = f(s) (seD) ()



is the approximation operator. If d; > 1, the operator S from (4) and (5) is well-defined and
continuous iff the embedding of W) (D;) to Ly(D;) is continuous, that is, iff

1<g< and dlz(l—l> )
1 p q+
or
q = 00, 1<p<oo, and dil>% (6)
or
q = 00, p € {1,000}, and dLIZ%. )

Here we used the notation a, = max(a,0) for a € R.
In the sequel we also need the stronger condition (of compact embedding)

£>(-Y),

In the terminology of Section 2 of Part I we put G = L,(D;), and K = K. We consider
standard information, that is, function values. This needs some care since W (D) consists of
equivalence classes of functions.

If (3) holds, then each class [f] € W (D) contains a unique continuous representative and
we set Wy (D) = {f € C(D) : [f] € Wy (D)}, equipped with the norm || f[lwr ) := [I[f]llw;p)-

If (3) does not hold, we let W] (D) be the respective Sobolev space of functions (not equiv-
alence classes), thus f € W) (D) iff [f] € W] (D), where [f] is the equivalence class of f with
respect to equality up to a subset of D of Lebesgue measure zero. This is a linear space and
1 fllws oy = [I[f]llwy(p) is a semi-norm on it. Clearly, S can also be viewed as an operator from
WI(D) to Ly(Ds).

Finally, in both cases we put F' = Byyr(py or F' = Wy (D) and A = {6, : t € D}, where
5:(f) = f(t). Consequently, here we study the problems

(BW£(D)7LQ(D1)7S7A’K) (8)
(W;(D)7LQ<D1)757A>K> (9>

We also recall the discrete version of parametric integration studied in Part I. Let M, My, M,
be finite sets and define the space L]]JW to be the set of all functions f : M — K with norm

1/p
1 . '
HfHLM = (W Z |f(2)|p> lf p < 00

- iEM
max | f (i) if p=o0

and the operator of discrete parametric integration (or vector-valued mean computation) as

SMLA I (10)
with X
(SMA f)(5) = > fi ). (11)
| M| -

In this connection we consider the problems
<BL11,”1 X Mg , Lé\/h, SMl’MQ, K, A) (12)
M7 x Mo My My ,M2
(LM L, S K A) (13)



where A = {513 NS Ml, j S MQ} with 5”(](.) = f(Z,j) Given N, Nl,NQ € N, we write Li)\f for
LELNT L2 for LELNIXELNE 0 q §NLN: for SELNIZILN:] - Fyrthermore, for 1 < p,q < 0o
we define

1 if p=qgq=o

0 otherwise. (14)

p=min(p,2), oy = {

For the definition of the non-adaptive randomized algorithm AD = (A%%ZJ)WGQ and the adaptive

randomized algorithm A%gzn = (A%%,w)w < for problem (13) we refer to Part I. The next two
results are Proposition 4.2 and 4.3 of Part I. Since they will be used in connection with (45)
below for several n simultaneously, we denote the involved probability space by (£, 35, Py)
and assume w.l.o.g. that it is the same for all n € N (the index 2 is convenient for the further
notation). The respective expectation is denoted by E.

Proposition 2.1. Let 1 < p,g<oco and 1 <w < p, w < co. Then there is a constant ¢ > 0
such that for all n, Ny, Ny € N with n < NyNy and all f € Lévl’NZ

E, A®)

n,w9

f=8MNf (n2 Ny, card(AZ,) <20 (wp € a), (15)

and

1/w
(Ball 5™ f — AR, 1o, )

(U/p—1/d) n —1+1/p n 01/2
< ¢N; P [—-‘ min (log(Nl +1), [—-D HfHLNl,NQ. (16)
Ny Ny P

The adaptive algorithm Aﬂn will only be used in the case 2 < p < ¢ < oco. The following
is Proposition 4.3 of Part 1.

Proposition 2.2. Let2 <p < qg< oo and 1 < w < oo. Then there exist constants ci,co > 0
such that the following hold for all m,n, N1, No € N and f € Lévl’NQ :

card(A®) ) < 6mn (17)

,1M,W2

and for m > c11log(Ny + Ny), 1 <n < N1 N

1/w
(Balls™ ™ f = AD), L, f 12, )

p1jg [ 10 —(1-1/p) n —1/2
Al - IR R [T (18)

Let us also note that for all wy € g,

A (0)=0, AB) (0)=0. (19)

n,w2 n,m,w2

This follows directly from the definitions of Aq(f,z& and A@nm in Part I. The next proposition
summarizes the lower bounds in Theorem 4.5 of Part 1.



Proposition 2.3. Let 1 < p,q < oco. Then there exists constants 0 < ¢y < 1, ¢1,...,¢4 > 0,
such that for n, N1, Ny € N with n < cgIN1 Ny the following hold:
If p<2orp>gq, then

ran—non / QN1p,N: N ran / QNp,V: N-
e, (S 2,BL£11,N2,Lq1>Z€n (S 27BL£)V1,N27L(11)

-1/, [ n 70T n T\\""
> NPT H <min <log(N1—|—1), [ED) : (20)

If2 < p<q, then

ran/ QgNip,N: N
ey (g 2,BL;\11,N2,Lq1)

oy n —(1-1/p) n —1/2 5 /o
> NPTV — +e | (log(Ny + 1))°=/ (21)
Ny Ny
and
n 1712
ran—non 1/p—1
e” (SNl’N2,BL;V1,N2,LéVI) > C3]\71/13 /a ’VE—‘ . (22)

In the deterministic setting we have

2 (SN2 B,y L) > Ny (23)
p

3 Deterministic and stochastic discretization

In this section we are concerned with discretization, that is, reducing the problem of parametric
integration to a family of vector-valued summation problems. We present the needed ingredi-
ents of the discretization technique developed in [3, 4] and used in [11, 2, 14, 15]. This technique
is based on deterministic function evaluations, the availability of which requires that W} (D)
is continuously embedded in C(D). In this paper we also study the case of non-embedding.
For this purpose we develop here, in addition, a stochastic discretization technique. The pre-
sentation below also includes deterministic discretization, which appears as a special case of
the stochastic one. In this section we assume dy,dy € Ny, di + do # 0, that is, we include the
border-line cases d; = 0, dy # 0 (integration) and d; # 0, do = 0 (approximation).
For [ € Ny let

be a partition into congruent cubes of disjoint interior with side length 27!, If didy # 0, we
assume in addition, that

Dy =D x DY) i =2%(iy — 1) + iy,

li1 lig

where
2d11 2d2l

D,=JDY, D,=|J D

i1=1 io=1



are respective partitions of Dy and Ds.
Let s; € Dy; denote the point with minimal Euclidean norm. We introduce the following
operators Fj; and Ry; on F(D,K), the set of all K-valued functions on D, by setting for s € D

(Euf)(s) = fsy; +27%s)
and

e = { 4 (21)

0 otherwise.

We also need the operators Rl(ill) for 1 < 4; < 24! which are defined analogously, with D;
instead of D. Definition (24) also makes sense if d; = 0. Then we have F({0},K) = K and

Rl(ill) = Idg, where Id denotes the identity operator.

Fixr e Nand 0 < § < 1. If r > 2, let (¢1)%_, be the uniform grid of mesh size (r—1)~*(1—0)
on [0,1 — 6] and if r =1, set k = 1 and t; = 0. Let P be for d = 1 the respective Lagrange
interpolation operator of degree r — 1 and for d > 1 its tensor product. We consider P as an
operator from F(D,K) to L (D). Let P"-1(Q) denote the space of polynomials of maximum

degree r — 1 on a set Q C R%. Then P can be represented as
(PA)(&) =) ft)ex (f € F(D,K),t € D). (25)
k=1

with the d-dimensional tensor product Lagrange polynomials (yg)%_;, which form a basis in
the space Pr1(R?).

max

Now we randomize this operator. Let ¢ be a random variable over a probability space
(€1, %1, P;) with values in [0, 1]¢. Define

(Poof)(t) = xp(t) Y f(tr + do)pu(t — d0) (f € F(D,K),t € D). (26)
k=1

Expanding ¢ (t — o) with respect to ¢t and o, we can represent

K

pr(t —00) = Y au(0)p;(t),

=1

with aj;, € Pro1(RY), hence

max

Poof =xp )Y ai()f(tx+d0)p; (f € F(D,K)).

j=1 k=1
For f € F(D,K) and [ € Ny we set
2dl 2dl K K
Piof =Y RiPooEuf = > > ajl0)f(su+ 27" (t + 60)) Rup;. (27)
i=1 i=1 j=1 k=1

Next we define

KR K

2d
Byof = (Pro— Poo)f = Z Z Z oo (0) f (810 + 27 (thy + 00)) R i Pjo

i0=1 jo=1 ko=1

—XD Z Z amko(g>f(tk‘o + (59)§0m' (28>

m=1 ko=1



Expanding
XDy,ipPm = Z BiomjoRLiogpjo
Jo=1

with Biymj, € K, (28) turns into

2d K K
Boof = Z Z Z (ajoko(g>f<31,io + 27 (tx, + 00))

i0=1 jo=1 ko=1

- Z ﬂiomjoamko(g)f(tko + 5Q>> Rl,iogojm
m=1

which we write as
P of = Z Zbﬂc (9))s,
=1 k=1
with
kK = 2%, k' =2k,

and for 1 <ip <29 1< jy <k, j=k(ig—1)+7jo, 1 <k <2k

Y; = Riipj
‘ ( ) o 817i0—|—271(t1€—|—5g) if 1§k’§l‘€
k@) = thr + 00 if k+1<k<2k
ajok(0) if 1<k<k
bjr(0)

Z Bigmjoamp—r(0) i r+1<k <2k

Thus the ¢;;(p) are D-valued and the bjj(p) scalar-valued random variables.
Now we put

Yij = Rub; (1 <i<2% 1 <5 <w)
and let

2dl 2dl !

P, f Z RiPjEnf => ) Z bjk(0) f (s + 27" jk(0)) s

i=1 j=1 k=1
Observe that

2dl 2d
Pl,=> Ry ( > RiiyPogBri, — Po,g> Eii = Piy1 — Py,

=1 i0=1

hence for lo,ll < NU, lo S ll
h—1

Pyy=DPy+ Y P,
1=y

For the sake of brevity we denote

Ty =Z[1,2" x Z[1, K], Toy = Z[1,2%]

(29)

(30)

(33)

(34)



and set
Nig= Ty = &2%, Ny = |Tyy| = 224 (35)

Define the operator 7; : span {ty;; : 1 € Z[1,2%], j € Z[1, ']} — Lzz,l’lXIQ’l by
Tituij = gy ((11,5) € Ty, iz € Tpg, 0= 2%!(iy — 1) + dp).

It follows from the definition (30), (31) of ¢4;; and the independence of the sequence (¢)5_,
see (25), that T; is correctly defined and

HEf||L§1,lXI2,l S CHfHLp(D) (f S span {%]}) . (36)
We define furthermore
Upp : Wi(D) — Ly Uy, = TP}, (37)
Then
(Utof)((i1, ), Z bj(0).f (s + 27"t (0))- (38)

Next we turn to the operator of parametric integration. Put
0; = S; € Loo(D1) (1<) <)

and
Oy = RO ((i1,5) € Tny). (39)

Observe that for (i1,7) € Zy,, ta € Zoy, 1 = 22 (iy — 1) + 4a,

S,lvblz] - SRszJj =27 dQZRl“ S’QD] =2 dglel“] (40)
Let
2dil  k/
Vit Ly(Tig) = Lo(D1), Vig= > gli1, )0, (41)
i1=1 j=1

According to (39), for d; > 1 the supports of the 6, ; are disjoint for different ¢;, therefore

9dql 1/q
Vigllz,oy = (Z )
Lq(D1)

Zg Zla lelj
i1=1
1/q
) < CHgHLq(Il,z)7 (42>
Lq(D1)

odyl
= ( Y Zghj

11=1
with the obvious modifications for ¢ = co. This relation trivially also holds for d; = 0, since in
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this case by (39) 0y;,; = 0;. Now (32), (38), (40), and (41) give

2dl ! P
SPLE = Y D) bilo)f(su + 27 (0)) Sty

i=1 j=1 k=1
2d1l  / odol 11

= D> ) 273 bi(0) f (s + 27 tik(0)) b
=1 j=1 io=1 k=1
2d1l s odal

- Z Z 2_d2l Z(Ulgf)(('ll,]), iQ)elilj
i1=1 j=1 in=1
2dll !

= YN (STEULS) (i1, )i = VIS U f, (43)
i1=1 j=1

where ST1i720 is the operator of vector valued mean computation defined in (10) and (11).
Using (34), this implies

l1—1 l1—1
S=8=8P,,+SPy,+ Y SP,=S5—S8P,+SP,+ Y VS, (44)
l:lo l=lo

This way the problem S is reduced to the computation of SP,,, which will be done exactly,
provided [y is suitable chosen, and to the (approximate) computation of the vector-valued
means STi0%2t for Iy <1 < ly. Solet Iy <1y € Ny and let Ay, : L%”’Iz’l — L?’l for each [ with
lo <1 <1y be a randomized algorithm for problem (13), independent of p. For convenience of
presentation, we assume that the A, are defined over a different from (€24, 31, P;) probability

space (22, X9, Py) and put
(5, P) = (24, X1, P1) x (Qg, 35, Py).

The expectation with respect to Py and P are denoted by E, and E, respectively. Now we define
a randomized algorithm A = (A,),eq for problem (9) by setting

h—1

Au(f) = SPygonf + D Vidiw Uigunf) (0= (wi,ws)). (45)

I=lo

For fixed w € ), A, is indeed a deterministic algorithm in the formal sense of Section 2 of Part
I. This follows from Lemma 2 and 3 of [5]. Moreover, if the A;,, are non-adaptive, then so is
A,. Finally, we assume that for lp <1 <[, and f € W} (D) the mappings

card (Al,w27 Ulﬂ("-’l)f)
Al,wz (Ul@(wl)f)

are Y-measurable. Then (A, )ueq is a randomized algorithm for problem (9).

((JJl,(JJQ) — { (46)
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Proposition 3.1. Let r € Ny, 1 < p,q < o0, 1 <w < oo, and assume that (6) and (46) hold.
Then there is a constant ¢ > 0 such that for all lo, 1y, o as above, and f € W} (D)

1/w
(EHSf — Aw(f>|\2”qwl>)
li—1

1/w
< CEISS - 5P ) + e (Bl s O, )
1=lo a
-1

1/w
+e) sup (HgH;%”Uqu]EQHSL’“IQ’IQ — A, (9)”2"%,;)
g q

I=lo gGLZMXIZ’Z\{O}
w 1/w
X (El ||(Pl+179(w1) - PZQ("JI))f”Lp(D)) : (47)

Moreover,

-1
card(A,, Wy (D)) < s2(@+alo 4 Z card (A, , LII,“XIQ’Z) (w=(w1,w2) €Q).  (48)
I=lo
Proof. Relation (48) follow directly from (27) and (38). By (44) and (45)

I1—1

Sf - Aw(f) = Sf - Sphgf + Z VZ(SL’Z’IQ’lUl,g(wl)f - Al,wg(Ul,g(wl)f>)~ (49>

I=lo
For fixed w; we have

E, HSZl’lJQ’lUl,g(wl)f - Al,wz(Ulvg(Wl)f)legl‘l
< Bl A O)%,

+c sup (HgH% ZXIQ’ZEZ HSIl’l’IQ’lg - Al,wz (g)HZ)IU> HUl,Q(wl)wall,lXIzr
I1,1x Ty Lyp> 1 Ly
geLyp \{0}
Taking the expectation with respect to w; and using (42), this gives

E HW(SIl’hIlel,g(wﬂf - Al,w2(Ul,g(w1)f)) ||1£q(D1)

< cEE, HSII’“IQJ Ubo(wn)f — Al"’JQ(Ul’Q(M)f)”ZUQ(DI)
< C]EQHAl,wg <O)||1£Il,l
q

geLILzXIzz P
p

+c sup (Hg”;gl’lxszg HSIU’IQ’ZQ - Al,wz(g)Hz]qzlvl) El||Ul,g(w1)f||zuz1,zXT-2,z' (50)
\{0} !

Finally, by (36) and (37)

EdlUon T rzy < NGBl (P o) = Pron) FIIL, )
P
< CE[(Proton) = Proton) FIIZ, 0)- (51)

A

Combining (49)—(51) gives (47).
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In the sequel, we will be interested in the following two special cases of the random variable
o from (26). Firstly, o = ¢, where ( is a uniformly distributed on [0, 1]? random variable taking
all values in [0,1]¢, and secondly, let ¢ = (y, with (y a random variable with (y(w;) = 0 for all
w1 € . Thus, (o is the deterministic case. The following result contains the crucial estimates
for the discretization technique.

Proposition 3.2. Let r,d € N, 1 < p,q < oo, r/d>1/p—1/q, 1 <w < q, w < co. Then
there are constants ci,co > 0 such that for all | € Ny

w w —rl+(1-1)
sup (Bil|f — Pefll2 )" < a2 G (52)

feByr(p)
Moreover, if the embedding condition (3) holds, then

—rl+(1-1) a
sup Hf_PlCofHLq(D) < 2 +(P q>+ ) (53)

feBwr ()

Proof. Relation (53) is contained in [4], relation (12), while (52) was shown in [6], Proposition
1, for ¢ < co. The estimate (52) also holds for ¢ = oo, since in this case r/d > 1/p, so the
embedding condition (3) holds and [4], relation (12) gives

frl+(%f%)+dl

sup  ||f = P fllgp < 2
€Bywr ()

for each w; € €, with a constant not depending on w; (the latter following directly from the
proof of (12) in [4]).
[

Corollary 3.3. Letr e N, 1 <p< oo and 1 <w < p, w < co. Then the following holds for
0 = C, and if the embedding condition (3) is satisfied, also for o = (p.

sup (]E1||Ul9f||1£11,l><12,l)1/w < Cz_rl'
fe€Bywr (D) P

Proof. From (33), (36), (37), and Proposition 3.2 we obtain

swp (EullUig s,z % < T b (Bl Prvsg — Prf 2, ) < 277
f€Bwr (D) » feByr(p)

]

Lemma 3.4. Let r € N, 1 < p,g < o0, 1 <w < p, w < oo, and assume (7). Then the
following holds for o = ¢ and, if the embedding condition (3) is satisfied, also for o = (y. There
1s a constant ¢ > 0 such that for all l; € Ny

w 1/w i (1-1)
sup (El\ISf—SBIQfHLq(DI)) < o4,

feBwr (D)
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Proof. For p = ¢, and therefore also for ¢ < p, this follows directly from (52) of Proposition
3.2, thus, we can assume ¢ > p. By Corollary 3.3 and (42), for [ € N,

1/w
VST P24 Uy || Lowg (D), Lu(@1.B1 Lg(D1)) = SUD (El||VzSI“’I“Ulef||1fq(D1>>

feByr(p)
7 1,Z; T L
< ViSRRI sup (Ethh@fufaJx5J)
feBwr () P
< cQ—rl+(%—§)+dlz’ (54)

where we used that

1_1
[ iy iR o(5=7)

q )

see relation (57) of Part I. Since by (7), r > (% — %) dy, (54) implies for [; € Ny
+

> visheRay, = X (55)

1=l
with convergence in LW (D), L,(€21,Py, Ly(Dy)), and

—rl+(1-1) a1
HXHL(Wg(D),Lw(QLPl,Lq(Dl)) S 02 1+(P q)+ ! 1_ (56)

On the other hand, by (34) and (43), for m > [

m—1

SPy,— SPy= > WViSTRi,,

1=l
w 1/w
Lq(D1)>

1/w
< 1S5 Ly(D) > LDl suwp (Ballf = Puof ) <27,

feBwr (D)

Since w < p < ¢q, Proposition 3.2 gives
m

sup (]E1 Sf = SPyof =Y ViSHR, f

feBW}]“(D) 1=l

1/w
= s (BillSS — SPuof 00

feBwr (D)

thus,
Z ‘/ZSII,hIQ,lUlg =9 — SPllg (57>

1=,
with convergence in L(W](D), Ly, (4, P1, Ly(Dy))). Let J @ Wi(D) — Wy (D) denote the
identical embedding. Then (55) implies

> wshRi, ] = XJ

1=l
with convergence in L(W] (D), Ly,(€21,P1, Ly(D1)). This combined with (57) yields X f = Sf —
SP,,f for f € W;(D) and, since W} (D) is dense in Wy (D), we have X = S — SP;,,. Now the
desired estimate follows from (56).

]
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Let us note that if o = (o, then Uj p(,)f does not depend on w; and therefore (46) follows
directly from the assumption that the (A4, )w,c0, are randomized algorithms for problem (13).
The following is a consequence of Propositions 3.1, 3.2, and Lemma 3.4.

Corollary 3.5. Letr e N, 1 <p,g< o0, 1 <w <p, w < oo, let either o = ( and assume (7)
and (46) or o = (o and assume (3). Then there is a constant ¢ > 0 such that for all ly,l; € Ny

1/w
sup (EHSf— Aw(f)H%q(Dl))

feBywr(p)
1—1

(i1 e
< oD S (EZHAM(())H;IU)
q

I=lg

Lhi—1 1/w
— — w
125 DERUNIE TSN (o8 TR T 7] R
1=lo gL\ (0} ’

4 Algorithms for Parametric Integration

In this and the following sections we assume dy,ds € N. The corresponding results for the
borderline cases of integration and approximation can be found in [7], which also contains
references to the vast literature on the complexity of these problems. Define for n € N, n > n(0)

logn (dy + do)lp(n) — o1 log lo(n)-‘
lon) =dy | —22" | 1,(n) = 59
o) =i | ] i = | L (59
() = [2 o —smn(—lot). )0 (1y(n) <1 < 1y(n)), (60)

where the constant n(0) € N is chosen in such a way that for each n > n(0) the resulting
lo(n),l;(n) satisfy
2 < lo(’rl) < ll(n), (61)

while the constant d > 0 will be specified later on in each of the considered cases. Note that
(59) and (61) imply

n(0) > 2. (62)
The definition of ly(n) implies
1 1
patz < ) < opTEn (63)
while (60) and (61) give
crlog(n+1) <lp(n) < li(n) < cglog(n+1). (64)

From the definition of [;(n) we conclude furthermore

dy+dg d1+dg o1

R lo(n)lo(n)—% < 2l1(n)<2 a7 lo(n)-ﬁ-llO(n)_ﬂ. (65)

Combining this with (63) and (64), we arrive at

c;;ni(log(n + 1))_% < 2h(m < 6471%(10(‘%(” + 1))_%- (66)
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Also note that by (59)

dy + do

dr

ll (n) S

lo(n), with equality if o1 = 0. (67)

We begin with the non-adaptive setting, where we use Proposition 3.1 with

Ay = A2 DN S L (1) <1< (n)

standing for the algorithm from Proposition 2.1, Ny, Ny, as given by (35), and we identify Z,
with Z[1, Ny,] and Zy,; with Z[1, Ny,]. According to (45), we define

li(n)—1

AN = SPomycnt + Y VAL o Uigenf) (W = (wi,w2)).
I=lo(n)

(4)

Let us check the measurability condition for (A, that is (46) for o = . It follows from

)wEQ’
the definition of Afl)(n) w, (in Part I) that the mapping

Qy 3wy — Afj)( ey € L(Ly o™ L™ (68)

n),w2

is a random variable taking only a finite number of values and that card (Affl)(n) wa? g) neither

depends on ws nor on g. Consequently, the mappings

card (A , g
L % 0y 3 (g, w2) — <2>( i) (69)
Anl(n),wg <g)
are B(L,],V l’l’NQ”) X ¥ measurable. Furthermore, for fixed f € W) (D) the mapping w; —

f(si + 275 (¢(wy))) is Xy-measurable. Consequently, by (38)

w1 — lﬁg@q)f <7O>
is ¥1-to-B (L;V 1’Z’NQ’Z) measurable. This implies that (46) holds, thus (A%L)WEQ is a non-adaptive
randomized algorithm.
To state the next result, we set

i ro_ 1 1_1
B = 1 if d_l_l_ﬁ+(p q)+ (71)
0 otherwise,

and introduce for r € Ny, d;,ds € N, 1 < p, q < oo the following function of n € N

n R (log(n+ )72 if z>1-14(1-1)
Jr

1_1

n w1, (log(n + 1))al(ﬁ—(p q)+) if & <1- % + <é — $>+’

where we recall that o; was defined in (14).
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Proposition 4.1. Let r,dy,dy € N, 1 < p,qg < o0, 1 <w < p, w < oo, and assume that (7)
holds. Then there are constants cy,ca > 0 such that for all n > n(0) and f € Wy (D)

Jw
(BISF — ALz ) < erba(n)(logln + 1), (73)
Moreover,
card(Anw,WT( )) < eanflog(n 4 1)) (w e Q). (74)

Proof. We fix n € N, n > n(0) and write shorthand [, instead of ly(n) and respectively [; and
n;. Taking into account that by (29) &’ > 2, we conclude from (60), (63), and (35) for I > I,

my < 2o o olditd)l — N
First we estimate the cardinality of A\'),. By (15) of Proposition 2.1 and (48) of Proposition
3.1,

l1—1
Bwrp)) < g2(drdlo 4 o/ Z ny
I1=lp
1—1
< f{2(d1+d2 lo + 2/4}/ //Z d1+d2 lo— Jmln((l lo) (ll l)) + 1)

I=lo

{c2<d1+d2>loz1 if §=0,

card(AW

n,w?

= clditd)loif 5> (),

Furthermore, by (16) of Proposition 2.1,

1/w
27 sup <||g||L3“v”1,l,N2,l]E2HSN“’NQ’ZQ - A%%?wzgll’;’m)
geL;Vl’l’NQ’l\{O} i a

1_1 _1 _1 .
< CQ_TlNl(f q>++1 ﬁnl (1 1)(log(N1l + 1))01/2 < C2y(l)+( )6mm((l7lo),(llfl)) (76)

with

_ 1 1 1 01
W) = —rl+ (<p - q)+ +1- p) dyl — (1 - ﬁ) (dy + do)lo + = logho.— (77)

Note that y(l) considered as a function of the real variable [, is linear, with constant (meaning
independent of n) ascent. Corollary 3.5 together with (19) and (76) gives

w 1w —rl+ l dil min -
(BISF = AL oy) < 2 hmakitig ZZMH Jamin(—1o)(2=1)_(7g)

I=lp

Also observe that

() + (1 - i) Smin((l o), (l — 1))

p

is continuous on [ly, [;] and linear on [ly, (lp+11)/2] and [(lo+11)/2, (1], also with constant ascent
on each of the intervals. Now we distinguish two cases.
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Case 1: Assume that

1 11
1>1——+(———) . (79)
dy P \p 4q/

Then (1) is a strictly decreasing function of I. So we can choose ¢ > 0 in such a way that also

1
(1) + (1 — —) dmin((l —1ly), (l; — 1)) is a strictly decreasing function of .
p

Consequently,

Zzy )8 min((I—lo),(lL—1)) < o), (80)

11 1
(o) = (—7“ + (— - —> d — (1 - —) dg) lo + L log . (81)
p a4 D 2

Note that by (59), (79), and (8

(7 1)
1 1 1 1 di + ds)ly — o1 1logl
(—r+(———> dl)zlg—(r—(———) d1>(1+ 2o —rloglo
P q/, P q/), dy
_ ( (1 _ 1) d1) Iy — (r— (l _ 1) d1) daly — o1 log ly np
p 4 P a4/, dy
1
). |
Jr

We have

IN

r—
q
1 1
< - (7’— (— — = 1) lo — (1 - :> (dalo — o1 logly) + ¢ < (lo) + ¢
P g p
which together with (78) and (80) yields
n w 1/w
s (E|ISf = AL FI2 o)

fe€Bwr (D)

< c2o) < 62< TJF(E*%) dl*(lfé)d2)10+%bglo <cn di+dy (log(n + 1))71

the last relation being a consquence of (63) and (64). Moreover, (75) and and (63) imply
card(Aszu, By (py) < cn. This proves (73) and (74) in the first case.

Case 2: Now let ) L
Fall(in) ©
dy D P q),

If equality holds in (82), or equivalently, v(lp) = Y(l1), we set § = 0, otherwise by (77), v(I) is
a strictly increasing function of [. Here we choose § > 0 in such a way that also

1

v(1) + (1 — j> dmin((l —ly), (I —1)) is a strictly increasing function of [.
p

This implies

-1
3 YO+ (1=5)dmin((i—to) (1 =) < (yPr9v(t), (83)
I=lo
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Relation (77) together with (59) gives

1 1
’7([1> = —Tll -+ (— - —) dlll

p q/.

1 1 01

+ 1—: dlll— 1—j (d1+d2)lo+—10gl0

p p 2

1 1
< stk (5 0) e (84)

P q/,

where we used that oy = 1 implies p = 2. From (78), (83), and (84) we obtain

@ w 1/w
sup (E |Sf — An,waLp(D1)>

feBW;(D)
< oGy gmpm) < oo (o) )
< en &ty (1og(n+1))“1(é*(%*%)+)+ﬁ17 (85)

where we also used (64) and (66). This proves (73) in the second case.

If - <1— +(5 — % , we have 51 = 0,0 > 0, so by (75) and (63), Card(AgfL, BW;(D)) < cn,
while if - - 113 ( ) , we have 51 = 1, 0 = 0, so (75) together with (64) and (66)
gives card( @, Byy(py) < enlog(n + 1), which proves (74) also in the second case.

]

Now we turn to the adaptive case and 2 < p < g. For n € N, n > n(0) let ly(n), l1(n), and
n;(n) be given by (59) and (60). Here we define for ly(n) <1 < l;(n)

my = [e(1)log(Ny; + Nay)l,

where ¢(1) stands for the constant ¢; from Proposition 2.2 and Ny, No; from (35). It follows
that

my < cl.

We use (45) with
Ay, = AP

the algorithm from Proposition 2.2 and define an adaptive algorithm

Ny,1,N2 Ny,
nl(n MW . Lp _> Lq

li(n)—1

3
ADL(F) = SPymcenf + 3 VAL o Uicnf) (@ = (wi,wn)).
I=lo(n)

Similarly to the non-adaptive case (68)—(70) let us verify the measurability condition for

(A,(Ezu)weﬂ. Here we note that the definition of AS)(H in Part I implies that

)ml w2

Q5 wy — AY) e F(Ly ™ Lg™) (86)

(n),my,w2
is a random variable taking only a finite number of values and that for each w, the mappings

card(An)n )
LéVl,z,Nz,z 59— 1(n),my w2 (87)

(3)
Anl (n),my,w2 (g)
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are B(Lgl’l’Nz’l)—measurable. Consequently, the mappings

3
card(AELl)(n),ml w? g)

Ny ,N:

Lp 1,01,4V2]1
(3)

A ) (9)

X QQ > (g,wg) — (88)

are B(Lévl’l’NQ’l) x Yp-measurable. Now fix f € W(D). As already mentioned, see (70), the

mapping wi — Uy, f is Xi-measurable, implying that (46) is satisfied, hence (A,(fl)w cq is an
adaptive randomized algorithm.
For r € Ny, dy,ds € N,2 < p < g < oo we define the function ®9(n) of n € N as follows. If

(-3 (-

then we set
—r—1ad
By(n) = i () (R 41) 4 90
o) = -+ r 1_ 1) (d 1 (50)
AT g (5-1) (R 41) 45
while if L L
(3= (o) o
we define

n 1T if =~ >1-—1
Dy(n) = o @ a (92)
n a e if -<1-1

The following observations, which are easily checked, complement the definition of ®5 and
will be of help in the sequel:

o, GO (1 1y

dy+dy — dy + dy qa \p q dy

1 1 1 1
if (—~)do>(-—=)d 93
: <2 p) 2‘(2? q) 1 (93)
—r — 1d, ro 1 1 r 1 1\ /d 1

2= > — - —— iff —>(———) (—1+1)+— 94
diy+dy — di p ¢ di — \p ¢ dy 2 (54)
el I I I A ®

dy + dy — di p g dy — q’

where, moreover, in each of (93), (94), and (95) equality holds in one relation iff it holds all
relations. This implies, in particular, that the passage from one rate to another in (90) and
(92) is ”continuous”, or in other words, we may replace ”>" by ”>” in (89), (90), and (92)
without producing a contradiction.
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Finally we put

B = {1 it (3-3)e<(3-i)d and F-1-4 (96)

0 otherwise

and recall that n(0) was defined before (61).

Proposition 4.2. Let r,dy,dy € N, 2 <p<qg<oo,1 <w<p, w< oo, and assume that (7)
holds. Then there are constants cy,ca > 0 such that for all n > n(0) and f € Wy (D)

1/w
(BISS = ACLDE o)~ < e1®a (n) (log(n + 1)), (97)
Moreover,
card(A%), Wi(D)) < can(log(n + 1))%*. (98)

Proof. By (17) of Proposition 2.2 and (48) of Proposition 3.1, the cardinality of Aq(fL satisfies.

li—1
Cal"d(Aanu, BWZ’;(D)) S li2(d1+d2)l0 + 6/{/ " Z myny
l=lo
1—1
62(d1+d2)lo 4 Cll Z (2(d1+d2)1075min((lflo),(llfl)) + 1)

I=lp

IN

2tz §f 5 =,
(ditd)lo] (99)
c\@rta)io] - if 5 > 0.
Moreover, by (18) of Proposition 2.2,
1/w
—rl —w Ny ;,N- 3 w
2 NlSlll}])Ql (HgHLglyl’NZlEZHS L 2l Agzl)mlwggHLé\’l,l)
geL \{0}
—(1-1/p) ~1/2
< 2frl Nl/Pfl/q ﬂ ﬂ ,
>~ ¢ ( 1,1 Ny, + Ny, HfHL;Vll Nag
< 9l <N11l1/q —1+1/p | 1/2 —1/2
< 0271(l)+<17%)6min((lflo),(h l))+0272(l)+%5min((l—lo),(l1—l))’ (100)

where we defined

() = (—7’ + (1 - %) d1> - (1 - %) (di + do)lo
Y2(l) = (—r + %ch) I — %(d1 + da)ly.

(di+da)lo
dy

Note that we have o; = 0 and due to (67), [} = . Therefore the values at the endpoints
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of the interval [lg, [;] are

() = (—r + (% - é) dy — (1 — %) d2> lo (101)
n(l) = (—rdlcde + (}3 - é) (di + d2)> lo (102)
Y2(lo) = (—r - %) lo (103)
all) = —le;delo- (104)

Observe that v, (ly), v1(11),72(lo), 72(l1) are constant multiples of [y and, since by (61) Iy # 0,
we have

m(h) > 72(h).
It follows from (93)—(95) that

wlly) > (o) iff (% - 1) dy > (1 - 1) d,

72(l0) > 71([1) iff
() > m(lh) iff

where, moreover, in each line equality holds in the left-hand relation iff it holds in the right-hand
relation. We obtain from Corollary 3.5 together with (19), (100), and (102)

1/w
s (EJ|Sf ~ ADL(NIE, o)

feByr (D)
l1—1 li—1

< en® 4y 1D+ (1=5)min((I=lo),(h=1) > gr(+30min((=l).(1=D)  (105)
I=lo I=lo

Case 1: Suppose that

hence 72(lo) > 71 (lo)
Case 1.1: If, moreover,

r 1 1 d1 > 1

O - (i 107

dy (P Q) (dz 2 (107)
then 72(lp) > 71(l1), thus summarizing, we have

Yalo) > 11(lo),  v2(lo) > 71(l) > ya(lh).

It follows that 75(l) is a strictly decreasing function of [ and

Ya(lo) — max(v1(lo), v1(l)) > clo
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for some constant ¢ > 0, so we can choose § > 0 in such a way that also
1
Ya(l) + 5(5 min((l —ly), (I — 1)) 1is a strictly decreasing function of [

and

(D) + <1 _ ]13) Smin((l = lo), (b — 1)) < 7o(ly) —8ly (o <1< 1y).

We obtain from (105)

da

1/w %
s (EISS = AZL (Nl p) < c20 < endd
fe€Bwr (D)

Case 1.2: On the other hand, if (106) holds and
r 1 1 dy ) 1
> S - - — + 1 + a)
dy <p Q> (dz 2

1) = 72(lo) > 1lo), 7(l) > 1(l).

then v9(lg) < v1(l1), hence

If v1(11) = 72(lp), then v (1) > 71(lo) and v2(lp) > 72(l1), and we choose § > 0 so that

(1) + (1 — %) dmin((l —ly), (l1 — 1)) is a strictly increasing function of [ (108)
Y2 (1) + %5 min((l —lp), (I — 1)) is a strictly decreasing function of I. (109)
If v1(11) > 72(lp), then we define 6 > 0 in such a way that (108) holds and
(l) + gomin((L— 1), (1 — 1)) < 7(l) — 8l (o <1< 1),

In each case we obtain from (105)

1/w 11
Sup <]EHSf_A7(IE:()U(f)”%p(D1)> < @ <en it

feByr (D)
1 1 1 1
L A e 110
<2 p)z_(p Q> : (110)

Case 2: Now assume

hence 71(lo) = 72(lo).
Case 2.1: If, furthermore,

then v1(lp) > 71(l1), so altogether

Y1(lo) = 72(lo),  7(lo) > (l) > ya(l).
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If v1(lp) = v2(lo), then v2(ly) > ~2(l1), meaning that both (/) and 2 (1) are strictly decreasing,
and we choose 0 > 0 so that

1
y(l) + (1 — —) dmin((l —lp), (ly — 1)) is a strictly decreasing function of [ (111)
p
1
Y2(1) + 5(5 min((l —ly), (I — 1)) is a strictly decreasing function of [.
If v1(ly) > 72(lp), we choose § > 0 in such a way that (111) holds and

3l + G min((U = o), (b =) < o) = 8o (lg <1< )

We conclude

1/w
s (EIISf = ADL(NE,oy) < 2@ <en s
fe€Byyr (D)

Case 2.2: On the other hand, if (110) holds and

<1--, (112)

r
dy
then 1 (lp) < 71 (ly), thus
Y1(l1) = 7i(lo) = v2(lo),  (lh) > 12(lr).
If v1(li) = 71(lp), then equality holds in (112) and we have 5 = 1, so we set § = 0. If
71(l1) > 7 (lp), we choose 6 > 0 so that

1
1 (1) + (1 - 5) dmin((l —ly), (I —1)) is a strictly increasing function of [,

In both cases (105) gives

1/w o411
sup (E|Sf— AP 7 < o) < en” e log(n + 1))".
n,w L,(Dy) 1
fe€Byyr (D)

Finally note that 6 = 0 only in the case 2.2 with v;(l;) = 71(lp), or equivalently, if S = 1.
Therefore by (99)
card(A®) Bywrp)) < cen(log(n + 1))

w?

which is (98).
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5 Lower Bounds and Complexity

The following theorem extends Wiegand’s Theorem 5.1 of [14] to the case of p # ¢. Furthermore,
Wiegand considered the randomized setting only for the case that W) (D) is embedded into
C(D). We provide an analysis of the randomized setting for the case of non-embedding, as
well. Recall that the functions @, &5 where defined in (72) and (89)—(92), and the parameters
b1, B2 in (71) and (96), respectively. Furthermore, put

o= ooz Godn) (2 (o) () s ni=

0 otherwise.

Theorem 5.1. Let di,dy € N, r € Ny, 1 < p,q < 0o and assume that (6) is satisfied. Then
there are constants ¢1_g > 0 such that the following hold for alln € N. If (p < 2)V (p > q),
then

a®i(n) < €S, Byy(p) Le(D1))
S eran—non(S’ BW;(D)an(Dl)) S 02@1(n)(10g(n+ 1))51(2_%) (114)

n

On the other hand, if 2 < p < q, then in the non-adaptive setting
es®1(n) < ERTNS, By, Ly(Di)) < 4y (n) (log(n + 1)) (2757), (115)
while in the adaptive setting
cs@a(n)(log(n + 1)) < €™ (S, Bwy(n), Lg(D1))

< n ) (log(n + 1))2(25). (116)

e, ("
= 2<log(n+1)

Finally, if the embedding condition (3) is satisfied, then in the deterministic setting

_r+d1(%—%)+ —r+d1(%—%>+
crn di+da S eget(S, BW;(D)a Lq(Dl)) S cgn di+da . (117)
Proof. For n < n(0) the upper bounds are trivial, while If = (}D — %) , we have by (72)
_l’_
®1(n) =1 and for 2 < p < g by (90) and (92) also ®5(n) = 1 for all n € N, hence all upper
bounds are trivial, so we assume for the proof of the upper bounds -~ > (% —é and in
! +

particular » > 1.

The upper bound for the deterministic setting follows directly from Corollary 3.5 with o0 = (j
and [} =y = Df@%—‘, thus, the algorithm in (45) consists only of the deterministic SF,, .
To show the upper bounds in the randomized non-adaptive setting, we conclude from (73)

and (74) of Proposition 4.1 that

erﬁr;zlz‘;r(‘nH))ﬁq (S, Bwr(py, Lg(D1)) < ¢®y(n)(log(n + 1))% (118)

This directly yields (114) and (115) for the case f; = 0. If §; = 1, we have by (71),

1
5:1—:+(1—1) (119)
dy p P 49/,
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and argue as follows. Let ¢(2) stand for the constant ¢y from Proposition 4.1 and set
n(1) = [¢(2)n(0) log(n(0) + 1)].
Then for each n € N, n > n(1) there is a unique k(n) > n(0) so that
[c(2)k(n)log(k(n) +1)] <n < [c¢(2)(k(n)+ 1)log(k(n) + 2)]. (120)
Since by (62) n(0) > 2, there are constants ¢;_4 > 0 such that for all n € N, n > n(1)

¢y log(n+1) log(k

< (n) +1) < cylog(n + 1) (121)
csn(log(n + 1)1 < k(n) <en

n(log(n+ 1))~ (122)
By (74) of Proposition 4.1
card(A (). Wy (D)) < c2k(n)(log(k(n) + 1))

and therefore monotonicity of the minimal errors, (120), (73), (119), (121), and (122) imply
e (S, Bwy(n), Lo(D1))

< L ?32‘22>aog<k<nm»aq (S, By, Ly(D1)) < e (k(m) (log(k(n) + 1))

< k() @G0 tog(k(n) + 1)) VLG
< cn dLJr(f i), +(log(n + 1))™ (F-G-3),)n
= cty(m)(log(n + 1)~ 70 5 = @y (n)log(n + 1))

’UW—‘

This completes the proof of the upper bounds of (114) and (115) for n > n(1), for n < n(1)
they follow trivially from the continuity of S.
In the adaptive case we argue similarly. Let ¢(3) denote the constant ¢y from Proposition

4.2. Setting
n(2) = [e(3)n(0)(log(n(0) + 1))+,
it follows that for each n € N with n > n(2) there is a unique k(n) > n(0) so that
[e(3)k(n)(log(k(n) + 1)) < n < [e(3)(k(n) + 1)(log(k(n) + 2))**"] . (123)
Furthermore there are constants ¢;_4 > 0 such that

) < colog(n+1) (124)

cplogin+1) < log(k 1
< n(log(n + 1))@=+, (125)

(n) +
csn(log(n + 1))~ < k(n) < e
By (98) of Proposition 4.2
card(A (. Wp (D)) < cok(n)(log(k(n) + 1))%+

and therefore monotonicity of the minimal errors, (123) and (97) imply

en (S, BW;(D), Lq(Dl))
< erﬁcrzs)k(n)(1og(k(n)+1))ﬂ2+11 (S, Bwy(py, Lg(D1)) < c®y(k(n))(log(k(n) +1))%.  (126)
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If By = 0, this together with (125) gives

If B, =1, it follows from (92) and (96) that
@, (k(n)) = k(n) 4",

which combined with (124), (125), and (126) yields

T 1

e;an(s7 BW;(D)7 Lq(-Dl))

N
Q
>
—~
S
~—
Ky
S|
Q
—_
Q
)
—~
a3
—~
S
~—
+
[u—
~—

< cn @ ‘ll(log(n—i—l))z T

L) Gogn s R

f— @ ————————————
2 (log(n—l— 1)

which completes the proof of (116) for n > n(2), since by (96) 5, = 1 implies - =1 — %. The

case n < n(2) is trivial.

Now we prove the lower bounds. For ¢ = 1,2 let ) be a C™ function on R%* with
supp ¥ C (0,1)% and

7= | YW(t)dt #0.
D,
For n > n(3) we define

() = Fogn TilligccliO) + 1—‘ L) = [(dl + dg)lo(nzll— o1 log lo(n)-‘ (127)

where ¢(0) stands for the constant ¢y from Proposition 2.3, while the constant n(3) € N is
chosen in such a way that for n > n(3)

The lower bounds for n < n(3) follow by monotonicity from those for n > n(3), so in the sequel
we assume n > n(3). Similar to (63)—(66) we derive from (127) and (128)

C(O)*dlidQ ndlidQ < 9l < cndlidg, (129)
cilog(n+1) < lp(n) <li(n) <cglog(n+1). (130)
c;:,ni(log(n + 1))_% < 2htm < cmé(log(n + 1))_%. (131)

Let I € {lo(n),l1(n)}. We put
Ny =24 Ny, = 2% (132)

and conclude from (129) and (128) that
no < e(0)2FRO0) = (0)N () Natgm) < Nity () Nayty(m)- (133)

Furthermore, from (129)-(132) we obtain

251

d
cnditdz < Ny < o+ cn(log(n + 1)) < Nijym) < can(log(n +1))77%. (134)



Put for 1 < iy < 248 and 1 < 45 < 2%!
1) _ pW (2) (2)
wl’h - lZl w /l/bliQ - Rl’[g w(2)7
with Rl(zl ) and Rl(?) as defined before (see (24)), and

Yi(s,t) = 0 (02 (1) (1= 2%y — 1) +1a, 5 € [0,1]%, ¢ € [0,1]%).

We have
So)s) = [ vulside=nN;iul)(s) (s € D)
l12
lelHWIZ(D) < C2rl (di+d2)l/p _ Czr (NllNQZ) 1/p '
Define
Ny, N2y
N1,1,N2 r .
Lo Ly = Wi (D), Tuf = ) f(i)du,
i=1
Vs LD < L ()i = N [ glods (1< i< N,
lzl
Then

Dy s Ly ™ = Wi(D)| < 2, |y Ly(D1) = Lo < e.
Indeed, by (136), for p < oo

Ny, N2, L/p
ITufllwyoy = | D IF@P Il +(D) < CzrleHL;Vl,lvNQ,l)
i=1
and by Holder’s inequality, for ¢ < oo.

Ny,

—1
[wglty, = NS
q

11=1

Ny,

1)19—1
< NS [ ol DR < ol o
lll

11=1
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(135)

(136)

(137)

(138)

(139)

The cases p = 0o and ¢ = oo are analogous. Moreover, from (135), (137), and (138) we

conclude, identifying ¢ with (i1, s),

N1y Noy N1y Naj

e R > TzNlefw v
i1=119=1
lel N2,l

= mm Y [N Y fiia) | e = mmas N (),

i1=1 i9=1

(140)
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with e; the unit vectors in KMt By (137)-(139), ¥;ST; reduces to S and
se Nl se T
et (W, ST, BLZ)VU,NM,Lq ) < et (S, 2" Byypy, Lo(Dy))
= 2"¢5M(S, Byy(n), Le(D1)), (141)

where set € {det, det-non, ran, ran—non}, see [5], Proposition 1, for details on reduction. These
results were shown in [5] for the adaptive setting. The non-adaptive case is much easier,
essentially straight-forward. Combining (140) and (141), we get

655, By, Ly( D) 2 €2 e (S04, B v, L), (142)

We conclude from (20) and (22) of Proposition 2.3 and (133) that for [ € {ly(n),l1(n)}
en (S, Bwy(p), Lg(D1))

N, SR n /2
> 277N in (log(N,, + 1 143
- [NJ (mm<0g< 1t L), [NuD) ’ (143)

set; € {ran,ran-non} if (p<2)V(p>q)

where

set; = ran—non if 2<p<aq.
Then (132) and (134) imply

min (log(Nl lo(n) + 1), [

d
—D > cmin (lo(n),ndlf‘b) > clog(n + 1), (144)
Nl Jo(n

) > cmin (ll(n),(log(n—i—l))“l)
> c(log(n + 1))°. (145)

log(N1 4,y + 1),

From (143), (134), (144), (145), and (72), we obtain

) ) .
S, By Ly Dy)) = e e (logln+ 1))

e B G704 tog(n + 1) EG D00 > ey (n),
)

since o7 = 1 implies p = 2. This proves the lower bounds in (114) and (115).
Now we turn to the adaptive randomized setting in the case 2 < p < ¢, so o1 = 0. Here
(21) of Proposition 2.3, (133), and (142) give for [ € {ly(n),l1(n)}

en (5, Bwy(n), Lq(D1))

and therefore, using (134),
en" (S, Bwy(p), Lg(D1))

lo(n) Arl/P—1/q n i/ lo(n) n e 8g,00/2
e n - —T n q,0
> 270 Nuo(n) L\G lo(n)-‘ +c¢c2Th ’VNl lo(n)-‘ (lOg(NLlO(n) + 1))

—rly(n) prl/p—1/ n
42 hl )Nl,l:f(n) q [Nll -
501 (M

—r+(——7)d1 ( %)dz —r—%dg

> cn ditdy +en @Fd (log(n + 1))°%0=/2 4 en™ @ v 70 > cdy(n), (146)

—(1-1/p) —-1/2
n [e @)
—‘ +C2—rll(n) ’V —‘ (log(Nl,ll(n) + 1))5q, /2




29

which is the lower bound of (116) for oo = 0. Now assume o, = 1, which by (113) implies

g = 00 and
(3G9 GG D)) o

As mentioned after relation (95), relations (89) and (90) also hold with ”>" replaced by ”>"
g
so we conclude from them and (147) that ®5(n) =n a6 and therefore from (146)

—T—%dz

€ (S, Bwy(py: L(D1)) = en @55 (log(n + 1))"/2 2 c@y(n)(log(n + 1))"/2,

showing (116) also for the case o9 = 1.
In the deterministic case we have by (142), (23), (129), and (134)

)
e —rig(n 1/p—1 —_— gt
ey (S, Bwy(p), Lq(D1)) > ¢2 ol )Nl(,l(/)l(on) .
which is the lower bound of (117). This completes the proof of the lower bounds and thus of

the theorem.
O]

6 Speedup

In this section we assume that r € Ny, dy,dy € N, 2 < p < ¢ < oo and (6) is satisfied. As in
Part I we want to determine the widest gap between non-adaptive and adaptive randomized
minimal errors. We define the gap as

eran—non(S’ BW;(D% Lq(Dl))

n

G;Lan(sv BW,@“(D)? Lq(Dl))

’Y(TZ, mnp,q, d17 d2> =

and the principal exponent of v(n;r,p, q,d;, ds):

logy(n;7,p,q,d1, ds) (148)
logn '

9(7"7]97 q, d17 d?) = lim
n—0o0
Corollary 6.1. Under the assumptions above the limit in (148) exists and

1
maxe(rapa q, d17 d2) = g’

where the maximum s taken over all r,dy,ds, p,q fulfilling the assumption. The mazimum is
attained iff
p:47 q = 00, TZdl :d2- (149)

In this case there are constants cy,co > 0 such that for alln € N

(log(n+ 1))~
(log(n + 1))~

if r=d; (150)
if r>dy. (151)

cm%(log(n +1))”
cln%(log(n + 1))_i_

S 7(”;7",4,00,d1,d1) S Con
< v (nyr4,00,dy,dy) < con

W= o
[SIES N|=

e ool
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Proof. By Theorem 5.1 we have

@, (n)(log(n + 1)) *~5)
®,(n)(log(n + 1))72/2

) ®y(n)
2 (ﬁ) (log(n + 1))52(2_%)

which together with the definitions (72), (90), and (92) of ®; and ®5 shows that the limit in
(148) exists. Now we determine 6. First we assume (89), which is equivalent to

C

<v(n) < e

(152)

11,1 1 1 1
____|____ = — =
htds 2 p_p_9_2 4 (153)
d 275 275
Then (72), (90), and (152) imply the following.
r 1 1 1
If —<-——+—-, then 6=0,
di —p q 2
1 1 1 1\ [d, )
if - ——-4+-<—<(-==-]|—=+1)+~=, then
p 2 (p Q><d2
9__r+(;0—§)d1—%2 ( 1 1)_(;"—1—(%—3+§))d2
n d1+d2 d1 P q n d1+d2 ’
11\ /d ) 1
if - — = —+1)+ =< —, then
<p q><dz 2
11 do 11
9_—T+(5—a> T2 —r—id (ra)
d1+d2 d1+d2 d1+d2
Clearly,
r (1_1><d1+1>+
dl P q dg 2
implies
r 11,1 11
(E-G-ir1))e_(G-1)a
dy + do T di+ds
Consequently, taking into account (153), we obtain
11 1 1) (1 1
G-a (06 oy
0< p Q) p q p 2 q<_. 154
STdivd, 0 1L =4 S8 (1534)

Now we assume (91), which is equivalent to

dy + ds S
dy

D= N
Q=R =
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By (72), (92), and (152) the following is true.

roo1 1 1
f —<-——+—-, then 6=0,
dy P q 2
1 1 1 1
if -—-+:<<1-2 then
p q 2 4 q
d:
9:‘”(%—%)651‘?2_(_1 1_1)2(?(% it3))
dy + da dp q di + do ’

1 1,1 r 1
Forp q+2<d1<1 qwehave

d1+d2 d1+d2
while fordLZI—l
1 q
<1_1>d2 (1_1><1_1> .
9: 2 b S 2 1; f ! §_7
dy + ds 537 8

see (154). We conclude that the maximal value of 6 is reached iff § = ¢ iff (149) holds.

So assume (149). Here we estimate the gap including log factors. By (14), (71), (96), and
(113) we have
1 if r= dl,

From (72) and (92) we conclude

0'2:1.

and consequently

@, (n)(log(n + 1)) *7)
©5(n)(log(n + 1))72/2
This together with (152) yields (150) and (151).
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