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Abstract

We study the information complexity in the randomized setting
of solving a general elliptic PDE of order 2m in a smooth, bounded
domain Q ⊂ Rd with smooth coefficients and homogeneous boundary
conditions. The solution is sought on a smooth submanifold M ⊆ Q of
dimension 0 ≤ d1 ≤ d, the right hand side is supposed to be in Cr(Q),
the error is measured in the L∞(M) norm. We show that the n-th
minimal error is (up to logarithmic factors) of order

n−min((r+2m)/d1, r/d+1/2).

For comparison, in the deterministic setting the n-th minimal error is
of order n−r/d, for all d1.

1 Introduction

In this paper we are concerned with the complexity of solving elliptic partial
differential equations. We shall mainly deal with the randomized setting.
For the complexity of elliptic equations in the deterministic setting, we refer
to [19, 21, 22, 4, 2, 3], and the references therein. The complexity of certain
parabolic problems was investigated in [18] and [14] in the deterministic, and
in [13], [17] in the randomized setting. The complexity of elliptic problems
in the randomized setting has not been studied before. This is the main aim
of the present paper.

Based on results about the randomized approximation of weakly singular
operators [9], and the Green’s function representation of solutions of elliptic
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partial differential equations [12], we determine the information complexity
of solving general elliptic problems with homogeneous boundary conditions.
While in previous work on the deterministic setting of elliptic problems only
the global problem is considered (that is, one seeks to approximate the solu-
tion in the whole domain), the above mentioned work on parabolic problems
considers only the solution in a single point (the local problem). This is con-
nected with the path integration approach and related representations.

Here we analyze a whole range of problems — the solution being sought
on a smooth, d1-dimensional submanifold, including the local problem for
d1 = 0 and the global one for d1 = d. We are concerned with the information
complexity, that means, determining the minimal number of function value
calls any algorithm has to invoke in order to reach a certain error. Equiv-
alently, we study the minimal error among all possible algorithms making
not more than a given number of function calls.

This approach gives strong lower bounds. The upper bounds can be
considered as approximation theoretic bounds, or benchmarks for concrete,
implementable algorithms. For we only count information calls, all other
operations are considered as free. This corresponds to the query complexity,
studied in the quantum setting in [13], and to the approach taken in [2, 3]
for the deterministic setting. In the papers [18], [14], [13], [17] precomputing
is considered free, which is essentially equivalent to our assumption. For a
special case of an elliptic problem, a fully implementable algorithm with the
number of operations being of the optimal order was presented in [9].

We consider adaptive randomized algorithms. For our analysis we need a
number of technical results on n-th minimal errors, such as reduction, addi-
tivity, and multiplicativity. Although such properties are sometimes applied
in simple situations in an informal way, and a first formal approach was given
for nonadaptive algorithms in [15], there are no rigorous general results on
adaptive randomized algorithms in the literature. We therefore have chosen
to present and prove the needed results in full rigor. It turned out to be
convenient to formulate a model of computation which is formally slightly
more general, but, in fact, equivalent to the usual one used in information
complexity analysis.

The paper is organized as follows. In section 2 we describe the problem to
be solved and state the main result. The needed results about n-th minimal
errors are derived in section 3. Section 4 contains the proof of the upper
bound of the main result, while the proof of the lower bound is given in
section 5.

Basic notation, facts and background on information-based complexity
theory – the framework in which we carry out our investigations – can be
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found in [19, 16, 6].
The complexity of solving elliptic PDE in the quantum model of com-

putation will be the topic of a subsequent paper [10].

2 Preliminaries and the Result

Let d ∈ N (throughout the paper N means {1, 2, . . . }, while N0 means N ∪
{0}). Let Q ⊂ R

d be the closure of a non-empty open bounded set. The
boundary of Q is denoted by ∂Q, the interior by Q0. Let C(Q) be the space
of continuous complex-valued functions on Q, equipped with the supremum
norm, and let Cr(Q) for r ∈ N be the space of continuous complex-valued
functions on Q which are r-times continuously differentiable in Q0, and
whose partial derivatives up to order r have continuous extensions to Q.
The norm on Cr(Q) is defined as

‖f‖Cr(Q) = max
|α|≤r

sup
x∈Q

|Dαf(x)|.

For a normed space G the unit ball {g ∈ G : ‖g‖ ≤ 1} is denoted by BG.
A mapping Φ : Q → R

d is called a C∞ diffeomorphism if there is an open
set U ⊆ R

d with Q ⊂ U , and a mapping Ψ : U → R
d such that Ψ|Q = Φ, Ψ

is injective, infinitely often differentiable and det(JΨ(y)) 6= 0 for all y ∈ U ,
where JΦ is the Jacobian of Φ. (It follows that Ψ(U) is open and Ψ−1 is
infinitely differentiable on Ψ(U).) Denote

W ′ = [−1, 1]d

W ′
+ = {y = (y1, . . . , yd) ∈W ′ : y1 ≥ 0}.

We say that Q is a C∞ domain, if for each point x ∈ ∂Q there is a closed
neighbourhood Ux of x in R

d and a C∞ diffeomorphism Φx from W ′ onto
Ux with

Φx(0) = x (1)

Φ−1
x (Ux ∩Q) = W ′

+. (2)

Let d1 ∈ N0, 0 ≤ d1 ≤ d. A subset M of a C∞ domain Q is called a d1-
dimensional C∞ submanifold of Q, if M is closed, for each point x ∈M∩∂Q
there is a closed neighbourhood Ux of x in R

d and a C∞ diffeomorphism Φx

from W ′ onto Ux with the properties (1), (2), and

Φ−1
x (Ux ∩M) = {y = (y1, . . . , yd) ∈W ′

+ : yd1+1 = · · · = yd = 0}, (3)
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and moreover, for each point x ∈ M ∩ Q0 there is a closed neighbourhood
Ux ⊂ Q0 of x and a C∞ diffeomorphism Φx of W ′ onto Ux such that

Φx(0) = x (4)

Φ−1
x (Ux ∩M) = {y = (y1, . . . , yd) ∈W ′ : yd1+1 = · · · = yd = 0}. (5)

It follows that if d1 = 0, then M is just any finite set of points of Q, and if
d1 = d, then M is the union of connected components of Q (it follows from
the assumptions above that there are only finitely many such components).

Let d ≥ 2, m ∈ N and let L be an elliptic differential operator of order
2m on a C∞ domain Q ⊂ R

d, that is

L u =
∑

|α|≤2m

aα(x)Dαu(x), (6)

with boundary operators

Bju =
∑

|α|≤mj

bjα(x)Dαu(x), (7)

where j = 1, . . . ,m, mj ≤ 2m − 1, aα ∈ C∞(Q) and bjα ∈ C∞(∂Q). Here
C∞(Q) = ∩s∈NC

s(Q), and b ∈ C∞(∂Q) means that for all x ∈ ∂Q we have
b ◦ Φx|W ′

1
∈ C∞(W ′

1), with W ′
1 = {0} × [−1, 1]d−1. Define

a(x, ξ) :=
∑

|α|=2m

aα(x)ξα (x ∈ Q, ξ ∈ R
d)

bj(x, ξ) :=
∑

|α|=mj

bjα(x)ξα (x ∈ ∂Q, ξ ∈ R
d, j = 1, . . . ,m).

We assume that L satisfies the ellipticity condition:

a(x, ξ) 6= 0 (x ∈ Q, ξ ∈ R
d \ {0})

and for each pair of linearly independent vectors ξ, η ∈ R
d the polynomial

a(x, ξ + τη) has exactly m roots τ+
i (i = 1, . . . ,m) with positive imaginary

part. Denote

a+(x, ξ, η, τ) =
m∏

i=1

(τ − τ+
i ).

We also assume that the complementarity condition is satisfied: For each
x ∈ ∂Q and each pair of vectors ξx, νx ∈ R

d \ {0} with ξx being tangent
to ∂Q at x and νx being orthogonal to the tangent hyperplane at x, the
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set of polynomials bj(x, ξx + τνx) (j = 1, . . . ,m) is linearly independent
modulo a+(x, ξx, νx, τ). (These are the assumptions made in Krasovskij
[12], and formulated in detail in [11]. The same conditions, except for the
restrictionmj ≤ 2m−1, are imposed in [1]. In both papers instead of infinite
smoothness a certain finite smoothness of the coefficients and boundary is
assumed.) We consider the homogeneous boundary value problem

L u(x) = f(x) (x ∈ Q0) (8)

Bju(x) = 0 (x ∈ ∂Q). (9)

Finally we assume, as in [12], p. 963, that there is a κ0 with 0 < κ0 < 1 such
that for all f in the Hölder space Cκ0(Q) the (classical) solution u exists
and is unique.

Let M be as defined above – a smooth submanifold of Q of dimension
d1, where 0 ≤ d1 ≤ d. If d1 = 0, we assume M = {x}, where x is any inner
point of Q. Let r ∈ N,

F = BCr(Q), G = L∞(M),

and define the solution operator S as follows:

S : F → G Sf = u|M ,

where u is the solution of (8), (9). Thus, we seek to find an approximation of
the solution of the boundary value problem on a d1-dimensional submanifold
M of the domainQ, for right-hand sides belonging to BCr(Q), the error being
measured in the norm of L∞(M). We admit point value information of the
function f and its derivatives, that is, the set of admissible information
functionals is

Λ = {δα
x : x ∈ Q, |α| ≤ r}

where δα
x (f) = Dαf(x). We shall study the complexity of approximating

S. Let edet
n (S, F ) and eran

n (S, F ) be the n-th minimal deterministic and
randomized errors, that is, the minimal error over F among all deterministic,
respectively randomized algorithms that use not more than n information
values (see the next section for the definitions).

For σ ∈ R with −d < σ < +∞ let

κ(σ) =





0 if d+σ
d1

> 1
2

3
2 if d+σ

d1
= 1

2
d+σ
d1

if d+σ
d1

< 1
2 and d1 = d

3
2 if d+σ

d1
< 1

2 , d1 < d, and r+d+σ
d1

6= r
d + 1

2
r
d + 3 if d+σ

d1
< 1

2 , d1 < d, and r+d+σ
d1

= r
d + 1

2 .

(10)
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The case d1 = 0 is included in (10) and in the theorem below by interpreting
d+σ
d1

= +∞.

Theorem 1. There are constants c1, c2 > 0 such that for all n ∈ N with
n ≥ 2,

c1n
− r

d ≤ edet
n (S, F ) ≤ c2n

− r
d (11)

and

c1n
−min

“
r+2m

d1
, r

d
+ 1

2

”

≤ eran
n (S, F )

≤ c2n
−min

“
r+2m

d1
, r

d
+ 1

2

”

(logn)κ(2m−d). (12)

Although we are mainly interested in the randomized setting, the de-
terministic case is included into the statements for various reasons: Such
results have not been formulated for the function spaces we consider here
(usually at least the target space of S is a Hilbert space). Moreover, no lower
bounds for the case of submanifolds have been considered. And finally, it is
done for the sake of comparison.

3 Some General Properties of n-th Minimal Errors

In this section we derive some general results on minimal error quantities like
reduction, additivity and multiplicativity, which will be needed in the sequel.
For background on information-based complexity theory, we refer to [19],
the specific formalism used here can be found in section 4 of [9]. We briefly
recall the basic notions. We consider a general numerical problem, given by
a tuple P = (F,G, S,K,Λ), where F is a non-empty set, G a normed space
over K = R or K = C, S a mapping from F to G, K a non-empty set and
Λ a non-empty set of mappings from F to K. Let k∗ = K (this choice just
guarantees that k∗ 6∈ K), and define the zero-th power of K as K0 = {k∗}.
We consider f ∈ F also as a function on Λ with values in K by setting
f(λ) := λ(f). Let F(Λ,K) denote the set of all mappings from Λ to K. Let
m,n ∈ N0 and define the concatenation operation ⊕ : Km×Kn → Km+n as
follows: For p = (k1, . . . , km) ∈ Km and q = (l1, . . . , ln) ∈ Kn with m,n ∈ N

we put
p⊕ q = (k1, . . . , km, l1, . . . , ln).

If m = 0 or n = 0, we define

p⊕ k∗ = k∗ ⊕ p = p.
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A deterministic algorithm A for P is a tuple

A = ((Li)
∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0)

where for each i,

Li : Ki−1 → Λ

τi : Ki → {0, 1}

ϕi : Ki → G

are arbitrary mappings. Let Adet(P) (or shortly Adet) denote the set of
all deterministic algorithms for P. For f ∈ F(Λ,K) and A ∈ Adet, the
computational sequence of A at input f , is defined as follows:

z0 = k∗

zi = (f(L1(z0)), . . . , f(Li(zi−1))) (i ≥ 1).

The cardinality card(A, f) of A at input f is the first integer n ≥ 0 with
τn(zn) = 1, and card(A, f) = +∞ if there is no such n. Define

Dom(A) = {f ∈ F(Λ,K) : card(A, f) <∞}.

For f ∈ Dom(A) and n = card(A, f) we define the output A(f) of algorithm
A at input f as

A(f) = ϕn(zn).

Define
card(A,F ) = sup

f∈F
card(A, f),

and the error of A as

e(S,A, F ) = sup
f∈F

‖S(f) −A(f)‖G

if F ⊆ Dom(A), and e(S,A, F ) = +∞ otherwise. For n ∈ N0, the n-th
deterministic minimal error is defined as

edet
n (S, F ) = inf{e(S,A, F ) : A ∈ Adet, card(A,F ) ≤ n}.

A randomized (or Monte Carlo) algorithm for P

A = ((Ω,Σ, µ), (Aω)ω∈Ω),

7



consists of a probability space (Ω,Σ, µ), and a family

Aω ∈ Adet(P) (ω ∈ Ω).

Let Aran(P), or shortly Aran be the class of all randomized algorithms for P.
For A ∈ Aran let Dom(A) be the set of all f ∈ F(Λ,K) such that card(Aω, f)
is a measurable function of ω,

card(Aω, f) <∞ for almost all ω ∈ Ω,

and Aω(f) is a G-valued random variable, that is, Aω(f) is Borel measurable
and there is a separable subspace G0 of G (which may depend on f) such
that

Aω(f) ∈ G0 for almost all ω ∈ Ω.

For f ∈ F(Λ,K), let

card(A, f) =

∫

Ω
card(Aω, f) dµ(ω)

if f ∈ Dom(A) and card(A, f) = +∞ otherwise, and set

card(A,F ) = sup
f∈F

card(A, f).

We define the error of A ∈ Aran by

e(S,A, F ) = sup
f∈F

∫

Ω
‖S(f) − Aω(f)‖G dµ(ω)

if F ⊆ Dom(A), and e(S,A, F ) = +∞ otherwise. For n ∈ N0 the n-th
randomized minimal error is defined as

eran
n (S, F ) = inf{e(S,A, F ) : A ∈ Aran, card(A,F ) ≤ n}.

To prove the needed general statements in a mathematically rigorous way
turns out to be extremely cumbersome if we can rely only on the standard
definition of a deterministic algorithm as given above. Therefore we present
here a formally more general approach, which is, in fact, equivalent to the
standard one, as we show below. On the other hand it is more convenient to
work with since it allows to store auxiliary information, such as information
about previous stages or intermediate results, needed later. A considerable
part of this section is devoted to the deterministic setting, because this
provides the basis for the randomized setting.
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An extended deterministic algorithm A for P is a tuple

A = ((Zi)
∞
i=0, (Li)

∞
i=1, (Ui)

∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0, z0)

where for each i, Zi is a non-empty set,

Li : Zi−1 → Λ

Ui : Zi−1 ×K → Zi

τi : Zi → {0, 1}

ϕi : Zi → G

are any mappings, and z0 ∈ Z0. We call Zi the state space of A at stage i.
Given f ∈ F(Λ,K), we associate with it a sequence (zi)

∞
i=0, we call it again

the computational sequence of A at input f , where z0 is fixed by the above,
zi ∈ Zi, and for i ∈ N0,

zi+1 = Ui+1(zi, f(Li+1(zi))).

Let card(A, f) be the first integer n ≥ 0 with τn(zn) = 1, and put card(A, f) =
+∞ if there is no such n. Define

Dom(A) := {f ∈ F(Λ,K) : card(A, f) <∞}.

For f ∈ Dom(A) and n = card(A, f) we put

A(f) = ϕn(zn).

Thus, an extended algorithm starts in the initial state z0. It collects
information about f (in an adaptive way): At stage i the state zi represents
the information computed so far, possibly including intermediate results. On
this basis a λi+1 = Li+1(zi) ∈ Λ is determined, and zi+1 is obtained from
zi and the new function value f(λi+1). The functions τi decide, when the
computation is terminated. Then the output element is determined from the
information contained in the last state, hence, as a function of the queried
values (f(λi))

n
i=1. If card(A, f) = ∞, the computation is considered as going

on forever and the output is undefined. Clearly, the standard definition of a
deterministic algorithm given above corresponds to the special case Zi = Ki

and Ui(z, k) = z ⊕ k (z ∈ Ki−1, k ∈ K).
It turns out that the formally more general definition we gave is, in fact,

equivalent to the standard one. The precise formulation is contained in the
lemma below:
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Lemma 1. For each extended deterministic algorithm Ã for P there is a
deterministic algorithm A ∈ Adet(P) such that for all f ∈ F(Λ,K)

card(A, f) = card(Ã, f),

hence Dom(A) = Dom(Ã). Furthermore, for all f ∈ Dom(A)

A(f) = Ã(f).

Proof. Let

Ã = ((Z̃i)
∞
i=0, (L̃i)

∞
i=1, (Ũi)

∞
i=1, (τ̃i)

∞
i=0, (ϕ̃i)

∞
i=0, z̃0).

Define ζi : Ki → Z̃i by

ζ0(k
∗) = z̃0,

ζ1(k) = Ũ1(z̃0, k)

ζi+1(k1, . . . , ki+1) = Ũi+1(ζi(k1, . . . , ki), ki+1) (i ≥ 1)

and for i ≥ 0

Li+1 = L̃i+1 ◦ ζi

τi = τ̃i ◦ ζi

ϕi = ϕ̃i ◦ ζi.

Let A = ((Li)
∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0). Now fix f ∈ F(Λ,K). Let (zi)

∞
i=0 and

(z̃i)
∞
i=0 be the respective computational sequences of A and Ã. We show by

induction that
z̃i = ζi(zi). (13)

For i = 0 this follows by the definition of ζ0. Now assume (13) holds for a
certain i ≥ 0. Then

L̃i+1(z̃i) = L̃i+1(ζi(zi)) = Li+1(zi).

Hence,

z̃i+1 = Ũi+1(z̃i, f(L̃i+1(z̃i)))

= Ũi+1(ζi(zi), f(Li+1(zi)))

= ζi+1(zi ⊕ f(Li+1(zi))) = ζi+1(zi+1).

This proves (13). It follows that

τ̃i(z̃i) = τ̃i(ζi(zi)) = τi(zi),
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consequently
card(A, f) = card(Ã, f).

If n = card(A, f) <∞, we thus get

Ã(f) = ϕ̃n(z̃n) = ϕ̃n(ζn(zn)) = ϕn(zn) = A(f).

In complexity theory, an important ingredient for lower bound proofs
is reduction. For continuous problems in the deterministic and random-
ized setting, reductions are usually applied on an informal basis. The only
reference which contains a formal notion (called subordination there) is the
habilitation thesis of Mathé [15]. In the present paper reductions are needed
in many places, so we develop the required tools in a rigorous way. Our ap-
proach is inspired by [15] (but is somewhat more general, since it includes
adaptive algorithms) and by recent work on the quantum setting (compare
Lemma 1 and Corollary 1 of [7]).

Let P̃ = (F̃ , G̃, S̃, K̃, Λ̃) be another numerical problem. Suppose we are
in the following situation: We have an algorithm for problem P̃, and we
want one for problem P. Moreover, for each input f ∈ F of problem P
we can produce an input R(f) for problem P̃ such that the solution S(f)
is obtained as the solution S̃(R(f)), to which a mapping Ψ (symbolizing a
certain computation) is applied. Furthermore, each information about R(f)
can be obtained from κ suitable informations about f and the application
of a certain mapping. In this sense, problem P reduces to P̃.

We want to estimate the minimal error of S through the minimal error
of S̃. The result is given in the next proposition. Before we state it, let us
formulate the precise assumptions.

Assume that R : F → F̃ is a mapping such that there exist a κ ∈ N,
mappings ηj : Λ̃ → Λ (j = 1, . . . , κ) and % : Λ̃ ×Kκ → K̃ with

(R(f))(λ̃) = %(λ̃, f(η1(λ̃)), . . . , f(ηκ(λ̃))) (14)

for all f ∈ F and λ̃ ∈ Λ̃. Observe that (14) also defines a mapping R :
F(Λ,K) → F(Λ̃, K̃), which we denote by the same symbol. Suppose that
Ψ : G̃ → G is a Lipschitz mapping, that is, there is a constant c ≥ 0 such
that

‖Ψ(x) − Ψ(y)‖G ≤ c ‖x− y‖ eG for all x, y ∈ G̃.

The Lipschitz constant ‖Ψ‖Lip is the smallest constant c such that the rela-

tion above holds. Assume furthermore, that the solution operators S and S̃
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of P and P̃ are related in the following way:

S = Ψ ◦ S̃ ◦R.

Proposition 1. For all n ∈ N0,

edet
κn (S, F ) ≤ ‖Ψ‖Lip e

det
n (S̃, F̃ ) (15)

eran
κn (S, F ) ≤ ‖Ψ‖Lip e

ran
n (S̃, F̃ ). (16)

Before we prove Proposition 1, we show how a deterministic algorithm
for P̃ can be expressed by a suitable one for P.

Lemma 2. For each algorithm Ã ∈ Adet(P̃) there is an algorithm A ∈
Adet(P) such that for all f ∈ F(Λ,K)

card(A, f) = κ card(Ã, R(f)), (17)

hence f ∈ Dom(A) iff R(f) ∈ Dom(Ã). Moreover, for all f ∈ Dom(A),

A(f) = Ψ ◦ Ã ◦R(f). (18)

Proof. Let Ã = ((L̃i)
∞
i=1, (τ̃i)

∞
i=0, (ϕ̃i)

∞
i=0). Define an extended deterministic

algorithm

A = ((Zl)
∞
l=0, (Ll)

∞
l=1, (Ul)

∞
l=1, (τl)

∞
l=0, (ϕl)

∞
l=0, z0)

by setting for
l = κi+ j i ≥ 0, 0 ≤ j < κ,

Zl = Kj × K̃i, thus z0 = (k∗, k̃∗),

(in the first component we store, step by step, the κ informations on P
needed to compute one information on P̃, in the second component we
simulate the computation of Ã), and for (q, q̃) ∈ Kj × K̃i,

Ll+1(q, q̃) = ηj+1(L̃i+1(q̃))

Ul+1(q, q̃, k) = (q ⊕ k, q̃) if 0 ≤ j < κ− 1

Ul+1(q, q̃, k) = (k∗, q̃ ⊕ %(L̃i+1(q̃), q ⊕ k)) if j = κ− 1

τl(q, q̃) = τ̃i(q̃)

ϕl(q, q̃) = Ψ ◦ ϕ̃i(q̃).

Let f ∈ F(Λ,K) and let (z̃i)
∞
i=0 be the computational sequence of Ã at input

R(f), and (zl)
∞
l=0 that of A at f . Let zl = (ql, q̃l). We show by induction

that
q̃l = z̃i for l = κi+ j, i ≥ 0, 0 ≤ j < κ. (19)
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Indeed, this holds by definition for i = j = 0. Now assume (19) holds for
l = κi for a fixed i ≥ 0. We shall show that then it also holds for l = κi+j+1
for all 0 ≤ j < κ. By assumption and definition we have

zκi = (k∗, z̃i).

It follows from the definition that

zκi+j = (qκi+j , z̃i) (0 ≤ j < κ).

Denote L̃i+1(z̃i) = λ̃. Then

Lκi+j+1(zκi+j) = Lκi+j+1(qκi+j , z̃i) = ηj+1(L̃i+1(z̃i)) = ηj+1(λ̃).

Consequently

zκi+j = (f(η1(λ̃)), . . . , f(ηj(λ̃)), z̃i) (1 ≤ j < κ),

and therefore,

zκi+κ = Uκi+κ(zκi+κ−1, f(Lκi+κ(zκi+κ−1)))

= Uκi+κ((f(η1(λ̃)), . . . , f(ηκ−1(λ̃)), z̃i), f(ηκ(λ̃)))

= (k∗, z̃i ⊕ %(λ̃, f(η1(λ̃)), . . . , f(ηκ(λ̃))))

= (k∗, z̃i ⊕ (R(f))(λ̃))

= (k∗, z̃i ⊕ (R(f))(L̃i+1(z̃i))) = (k∗, z̃i+1)).

This proves (19). It follows that

τl(zl) = τ̃i(q̃l) = τ̃i(z̃i),

hence, letting n := card(A, f) and ñ := card(Ã, R(f)), we have

n = κñ,

therefore n <∞ iff ñ <∞, and in this case

ϕn(zn) = Ψ ◦ ϕ̃en(z̃en),

which gives
A(f) = Ψ ◦ Ã ◦R(f).

By Lemma 1, we can replace the extended deterministic algorithm A by a
deterministic algorithm with the same properties (17) and (18), which yields
the result.
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Proof of Proposition 1. Let Ã ∈ Ãdet(P̃) be any deterministic algorithm for
P̃ with card(Ã, F̃ ) ≤ n. Let A ∈ Adet(P) be as obtained from Ã in Lemma
2. It follows from (17) and (18) that

card(A,F ) = κ card(Ã, R(F )) ≤ κ card(Ã, F̃ ) ≤ κn,

e(S,A, F ) = sup
f∈F

‖S(f) −A(f)‖G

= sup
f∈F

‖Ψ ◦ S̃ ◦R(f) − Ψ ◦ Ã ◦R(f)‖G

≤ ‖Ψ‖Lip sup
f∈F

‖S̃ ◦R(f) − Ã ◦R(f)‖ eG

= ‖Ψ‖Lip e(S̃, Ã, R(F )) ≤ ‖Ψ‖Lip e(S̃, Ã, F̃ ),

and (15) follows. Now let

Ã = ((Ω,Σ, µ), (Ãω)ω∈Ω),

be a randomized algorithm for P̃ with card(Ã, F̃ ) ≤ n. Hence F̃ ⊆ Dom(Ã).
For each ω ∈ Ω, let Aω be derived from Ãω according to Lemma 2 and set

A = ((Ω,Σ, µ), (Aω)ω∈Ω).

Then it follows from (17), (18) and the Lipschitz property of Ψ that R(f) ∈
Dom(Ã) implies f ∈ Dom(A) (compare the definition of a randomized algo-
rithm given above). Moreover,

card(A, f) = κ card(Ã, R(f)),

hence
card(A,F ) = κ card(Ã, R(F )) ≤ κ card(Ã, F̃ ) ≤ κn, (20)

and

e(S,A, F ) = sup
f∈F

∫

Ω
‖S(f) − Aω(f)‖G dµ(ω)

= sup
f∈F

∫

Ω
‖Ψ ◦ S̃ ◦R(f) − Ψ ◦ Ãω ◦R(f)‖G dµ(ω)

≤ ‖Ψ‖Lip sup
f∈F

∫

Ω
‖S̃ ◦R(f) − Ãω ◦R(f))‖ eG dµ(ω)

= ‖Ψ‖Lip e(S̃, Ã, R(F )) ≤ ‖Ψ‖Lip e(S̃, Ã, F̃ ),

which together with (20) implies (16) and completes the proof of Lemma
2.

Next we establish additivity properties of the minimal error quantities.
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Proposition 2. Let p ∈ N and let Sl : F → G (l = 1, . . . , p) be mappings.
Define S : F → G by S(f) =

∑p
l=1 Sl(f) (f ∈ F ). Let n1, . . . , np ∈ N0 and

put n =
∑p

l=1 nl. Then

edet
n (S, F ) ≤

p∑

l=1

edet
nl

(Sl, F ),

eran
n (S, F ) ≤

p∑

l=1

eran
nl

(Sl, F ).

For the proof we need

Lemma 3. Let Al ∈ Adet(P) for l = 1, 2. Then there is an algorithm
A ∈ Adet(P) such that for all f ∈ F(Λ,K)

card(A, f) = card(A1, f) + card(A2, f), (21)

consequently, Dom(A) = Dom(A1) ∩ Dom(A2). Moreover, for all f ∈
Dom(A)

A(f) = A1(f) + A2(f). (22)

Proof. Let
Al = (Ll,i)

∞
i=1, (τl,i)

∞
i=0, (ϕl,i)

∞
i=0) (l = 1, 2).

To define an extended deterministic algorithm A, put

Zi = Ki × {0, . . . , i} × {0, 1}

(we arrange a step counting component and a control bit). We shall first
compute the information for A1, then for A2. The control bit is 0 while we
are dealing with A1, afterwards it is set to 1. The counting stops when the
computation of A1 is finished (and thus the counting variable shows how
many informations we computed for A1). Here are the formal details: Put

z0 =

{
(k∗, 0, 0) if τ1,0(k

∗) = 0
(k∗, 0, 1) if τ1,0(k

∗) = 1.

Let z = (q,m, b) ∈ Zi. We represent q as q = q1 ⊕ q2 with q1 ∈ Km and
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q2 ∈ Ki−m. Define

Li+1(z) =

{
L1,i+1(q) if b = 0
L2,i+1−m(q2) if b = 1,

Ui+1(z, k) =





(q ⊕ k,m+ 1, 0) if b = 0 and τ1,i+1(q ⊕ k) = 0
(q ⊕ k,m+ 1, 1) if b = 0 and τ1,i+1(q ⊕ k) = 1
(q ⊕ k,m, 1) if b = 1,

τi(z) =

{
0 if b = 0
τ2,i−m(q2) if b = 1,

ϕi(z) =

{
0 if b = 0
ϕ1,m(q1) + ϕ2,i−m(q2) if b = 1.

We put
A = ((Zi)

∞
i=0, (Li)

∞
i=1, (Ui)

∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0, z0).

Let (zl,i)
∞
i=0 be the computational sequence of Al at input f ∈ F(Λ,K) (l =

1, 2), and let (zi)
∞
i=0 be the respective one for A. Denote card(Al, f) = nl,

and λl,i = Ll,i(zl,i−1) for i ≥ 1 and l = 1, 2. We show that

zi =

{
(z1,i, i, 0) if i < n1

(z1,n1
⊕ z2,i−n1

, n1, 1) if i ≥ n1.
(23)

This holds for i = 0 by definition. Now assume it holds for some i ≥ 0. We
show it for i + 1. First we suppose i < n1. By assumption, zi = (z1,i, i, 0).
Therefore,

Li+1(zi) = L1,i+1(z1,i) = λ1,i+1

z1,i ⊕ f(λ1,i+1) = z1,i+1

τ1,i+1(z1,i ⊕ f(λ1,i+1)) = τ1,i+1(z1,i+1) =

{
0 if i+ 1 < n1

1 if i+ 1 = n1.

Thus, if i+ 1 < n1

zi+1 = Ui+1(zi, f(Li+1(zi))) = (z1,i ⊕ f(λ1,i+1), i+ 1, 0) = (z1,i+1, i+ 1, 0).

If i+ 1 = n1, we have

zi+1 = Ui+1(zi, f(Li+1(zi))) = (z1,i ⊕ f(λ1,i+1), i+ 1, 1)

= (z1,i+1, i+ 1, 1) = (z1,n1
⊕ z2,i+1−n1

, n1, 1).

Now suppose i ≥ n1. By assumption, zi = (z1,n1
⊕ z2,i−n1

, n1, 1). Conse-
quently,

Li+1(zi) = L2,i+1−n1
(z2,i−n1

) = λ2,i+1−n1

z1,n1
⊕ z2,i−n1

⊕ f(λ2,i+1−n1
) = z1,n1

⊕ z2,i+1−n1
,
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and therefore

zi+1 = Ui+1(zi, f(Li+1(zi))) = (z1,n1
⊕ z2,i−n1

⊕ f(λ2,i+1−n1
), n1, 1)

= (z1,n1
⊕ z2,i+1−n1

, n1, 1).

This proves (23). From this and the definition of τi we get

τi(zi) = 0 if i < n1 + n2

τi(zi) = 1 if i = n1 + n2.

Consequently,

card(A, f) = n1 + n2 = card(A1, f) + card(A2, f).

This implies
Dom(A) = Dom(A1) ∩ Dom(A2).

Now assume f ∈ Dom(A1) ∩ Dom(A2). Setting n = card(A, f), we obtain

zn = (z1,n1
⊕ z2,n2

, n1, 1),

hence,

A(f) = ϕn(zn) = ϕ1,n1
(z1,n1

) + ϕ2,n2
(z2,n2

) = A1(f) + A2(f).

The proof is completed by an application of Lemma 1.

Proof of Proposition 2. Both the deterministic and randomized case follow
by induction, once we show the case p = 2. Let δ > 0 be arbitrary. First
consider the deterministic setting. Let Al ∈ Adet (l = 1, 2) be algorithms
with

card(Al, F ) ≤ nl

and
e(Sl, Al, F ) = sup

f∈F
‖Sl(f) − Al(f)‖ ≤ edet

nl
(Sl, F ) + δ.

By Lemma 3 there is an A ∈ Adet with

card(A,F ) ≤ n1 + n2

and
A(f) = A1(f) + A2(f) (f ∈ F ).
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Consequently

edet
n1+n2

(S, F ) ≤ e(S,A, F ) = sup
f∈F

‖S(f) − A(f)‖

= sup
f∈F

∥∥∥
∑

l=1,2

(Sl(f) − Al(f))
∥∥∥

≤ sup
f∈F

∑

l=1,2

‖Sl(f) − Al(f)‖ ≤
∑

l=1,2

edet
nl

(Sl, F ) + 2δ.

Since δ > 0 was arbitrary, this proves the deterministic case. In the ran-
domized setting we argue similarly. Let Al ∈ Aran (l = 1, 2) be Monte Carlo
algorithms

Al = ((Ωl,Σl, µl), (Al,ωl
)ωl∈Ωl

),

with card(Al, F ) ≤ nl and e(Sl, Al, F ) ≤ eran
nl

(Sl, F ) + δ. By definition, this
means

sup
f∈F

∫

Ωl

card(Aωl
, f)dµl(ωl) ≤ nl (24)

and

sup
f∈F

∫

Ωl

‖Sl(f) − Al,ωl
(f)‖dµl(ωl) ≤ eran

nl
(Sl, F ) + δ. (25)

Let (Ω,Σ, µ) be the product space

(Ω1 × Ω2,Σ1 × Σ2, µ1 × µ2).

Given ω = (ω1, ω2) ∈ Ω1 ×Ω2, by Lemma 3 there is an Aω ∈ Adet such that
for all f ∈ F(Λ,K)

card(Aω, f) = card(A1,ω1
, f) + card(A2,ω2

, f), (26)

and, if card(A1,ω1
, f) <∞ and card(A2,ω2

, f) <∞, then

Aω(f) = A1,ω1
(f) + A2,ω2

(f). (27)

Define
A = ((Ω,Σ, µ), (Aω)ω∈Ω).

Let f ∈ F . By (24) and (26), card(Aω, f) is measurable and almost surely
finite. Moreover, by (27), Aω(f) is a G-valued random variable (here the
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separability assumption is needed that was made in the definition of a ran-
domized algorithm above). Thus, F ⊆ Dom(A). Moreover, by (26),

card(A,F ) = sup
f∈F

∫

Ω
card(Aω, f)dµ(ω)

= sup
f∈F

∑

l=1,2

∫

Ωl

card(Aωl
, f)dµl(ωl) ≤ n1 + n2,

and, by (25) and (27),

e(S,A, F ) = sup
f∈F

∫

Ω
‖S(f) − Aω(f)‖dµ(ω)

≤ sup
f∈F

∑

l=1,2

∫

Ωl

‖Sl(f) − Al,ωl
(f)‖dµl(ωl)

≤
∑

l=1,2

eran
nl

(Sl, F ) + 2δ.

Finally, we study multiplicativity properties of the minimal error quan-
tities. Here we suppose K = K.

Proposition 3. Let X be a normed space and assume F ⊆ X and Λ ⊆ X#,
where X# denotes the algebraic dual, that is, the space of all linear (not
necessarily continuous) functionals on X. Furthermore, let J : F → X be
the embedding map, let T : X → G be a linear operator and assume that
S = TJ . Then for all n1, n2 ∈ N0,

edet
n1+n2

(S, F ) ≤ edet
n1

(J, F ) edet
n2

(T,BX), (28)

and
eran
n1+n2

(S, F ) ≤ edet
n1

(J, F ) eran
n2

(T,BX). (29)

Proof. Let

P1 = (F,X, J,K,Λ)

P2 = (BX , G, T,K,Λ)

(and, as before, P = (F,G, S,K,Λ)). To prove the deterministic case (28),
let δ > 0 and let Al ∈ Adet(Pl) (l = 1, 2) be deterministic algorithms

Al = ((Ll,i)
∞
i=1, (τl,i)

∞
i=0, (ϕl,i)

∞
i=0),
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satisfying
card(A1, F ) ≤ n1, card(A2, BX) ≤ n2, (30)

e(J,A1, F ) = sup
f∈F

‖Jf − A1(f)‖ ≤ edet
n1

(J, F ) + δ := θ. (31)

e(T,A2, BX) = sup
g∈BX

‖Tg − A2(g)‖ ≤ edet
n2

(T,BX) + δ. (32)

We define an extended algorithm A in a way similar to the proof of Lemma
3. Put

Zi = Ki × {0, . . . , i} × {0, 1}.

Set

z0 =

{
(k∗, 0, 0) if τ1,0(k

∗) = 0
(k∗, 0, 1) if τ1,0(k

∗) = 1.

For z = (q,m, b) ∈ Zi, with q = q1 ⊕ q2, q1 ∈ Km, q2 ∈ Ki−m, define

Li+1(z) =

{
L1,i+1(q) if b = 0
L2,i+1−m(q2) if b = 1,

Ui+1(z, k) =





(q ⊕ k,m+ 1, 0) if b = 0 and τ1,i+1(q ⊕ k) = 0
(q ⊕ k,m+ 1, 1) if b = 0 and τ1,i+1(q ⊕ k) = 1

(q ⊕ θ−1(k − ϕ1,m(q1)(Li+1(z))),m, 1) if b = 1

(concerning the last line: note that ϕ1,m(q1) ∈ X). Furthermore, let

τi(z) =

{
0 if b = 0
τ2,i−m(q2) if b = 1,

ϕi(z) =

{
0 if b = 0
Tϕ1,m(q1) + θϕ2,i−m(q2) if b = 1.

Let f ∈ F and put
g = θ−1(Jf − A1(f)) (33)

It follows from (31) that
g ∈ BX . (34)

Let (z1,i)
∞
i=0 be the computational sequence of A1 at input f and (z2,i)

∞
i=0

the computational sequence of A2 at input g. Denote card(A1, f) = ν1,
card(A2, g) = ν2, and λl,i = Ll,i(zl,i−1) for i ≥ 1 and l = 1, 2. From (30)
and (34) we infer

ν1 ≤ n1, ν2 ≤ n2. (35)
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Now we show by induction that the computational sequence (zi)
∞
i=0 of A at

input f satisfies

zi =

{
(z1,i, i, 0) if i < ν1

(z1,ν1
⊕ z2,i−ν1

, ν1, 1) if i ≥ ν1.
(36)

The induction start and the induction step from i to i + 1 for i < ν1 is
identical to that in the proof of Lemma 3. We skip it here. Now suppose
(36) holds for some i ≥ ν1. We show it for i + 1. By assumption, zi =
(z1,ν1

⊕ z2,i−ν1
, ν1, 1). Consequently,

Li+1(zi) = L2,i+1−ν1
(z2,i−ν1

) = λ2,i+1−ν1
.

Moreover,

zi+1 = Ui+1(zi, f(Li+1(zi))) = Ui+1(zi, f(λ2,i+1−ν1
))

= (z1,ν1
⊕ z2,i−ν1

⊕ θ−1(f(λ2,i+1−ν1
) − ϕ1,ν1

(z1,ν1
)(λ2,i+1−ν1

)), ν1, 1)

= (z1,ν1
⊕ z2,i−ν1

⊕ g(λ2,i+1−ν1
), ν1, 1)

= (z1,ν1
⊕ z2,i+1−ν1

, ν1, 1).

This proves (36). It follows that

τi(zi) = 0 if i < ν1 + ν2

τi(zi) = 1 if i = ν1 + ν2.

Therefore, we have

card(A, f) = ν1 + ν2 = card(A1, f) + card(A2, g), (37)

which, together with (35) implies

card(A,F ) ≤ n1 + n2. (38)

For ν = card(A, f), we get

zν = (z1,ν1
⊕ z2,ν2

, ν1, 1),

and thus,

A(f) = ϕν(zν) = Tϕ1,ν1
(z1,ν1

) + θϕ2,ν2
(z2,ν2

)

= TA1(f) + θA2(g). (39)
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Consequently,

‖Sf −A(f)‖

= ‖TJf − TA1(f) − θA2(g)‖

= θ‖T (θ−1(Jf − A1(f))) −A2(g)‖

= θ‖Tg −A2(g)‖ (40)

≤ θe(T,A2, BX), (41)

where we used (34). According to Lemma 1, we can replace the extended
algorithm A by an algorithm (keeping the notation A), so that (38) and (41)
are preserved.

Together with (31), (32), (38), and (41) this gives

edet
n1+n2

(S, F ) ≤ e(S,A, F ) ≤ (edet
n1

(J, F ) + δ)(edet
n2

(T,BX) + δ),

and the result for the deterministic case follows, since δ > 0 was arbitrary.
Now we show (29). We choose A1 ∈ Adet(P1) and A2 ∈ Aran(P2),

A2 = ((Ω,Σ, µ), (A2,ω)ω∈Ω)

so that (30) and (31) hold, and furthermore

e(T,A2, BX) = sup
g∈BX

∫

Ω
‖Tg − A2,ω(g) ‖dµ(ω) ≤ eran

n2
(T,BX) + δ.

Then we define for each ω ∈ Ω an algorithm Aω ∈ Adet(P) as we did in the
previous proof, just with A2 replaced by A2,ω, and put

A = ((Ω,Σ, µ), (Aω)ω∈Ω).

Let f ∈ F and let g be given by (33). Then we get from (37)

card(Aω, f) = card(A1, f) + card(A2,ω, g),

and, by (39),
Aω(f) = TA1(f) + θA2,ω(g).

Since g ∈ BX ⊆ Dom(A2), the measurability and separability requirements
are satisfied, therefore F ⊆ Dom(A). It follows that

card(A,F ) ≤ n1 + n2.
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For the error we get from (40),

∫

Ω
‖Sf − Aω(f)‖dµ(ω) = θ

∫

Ω
‖Tg − A2,ω(g)‖dµ(ω)

≤ θe(T,A2, BX),

and hence

eran
n1+n2

(S, F ) ≤ e(S,A, F ) ≤ (edet
n1

(J, F ) + δ)(eran
n2

(T,BX) + δ),

which proves (29).

Remark. In relation (29) one would expect eran
n1

(J, F ) in place of
edet
n1

(J, F ). The proof above does not work in that case, since the random-
ized analogue of (31) does not give the crucial scaling (33) with (34). A way
out is to require linearity of the algorithm for T (see [5], Proposition 3 for a
result in that direction). Alternatively, one could pass to the probabilistic
setting. Such an argument is, in fact, part of the proof of the quantum
version of this proposition, see [8], Proposition 1. Here we do not pursue
this topic any further since relation (29) is sufficient for our purposes.

4 Upper Bounds

This section contains the proof of the upper bounds in Theorem 1. A major
ingredient of our analysis is a result of Krasovskij [12] on the Green’s function
of L . To state it let us introduce the following class of kernels (compare
also [9], where integral operators with such kernels are investigated).

Let d, d1 ∈ N, d1 ≤ d, and let Q1 be the closure of an open bounded
set in R

d1 , which we identify with a subset of R
d by identifying R

d1 with
R

d1 × {0(d−d1)}. Let Q2 be a bounded Lebesgue measurable subset of R
d of

positive Lebesgue measure. Let diag(Q1, Q2) := {(x, x) : x ∈ Q1 ∩Q2}.
Given s ∈ N and σ ∈ R, −d < σ < +∞ we denote by Cs,σ(Q1, Q2) the

set of all Lebesgue measurable functions k : Q1 × Q2 \ diag(Q1, Q2) → C

with the property that there is a constant c > 0 such that for all y ∈ Q2

1. k(x, y) is s-times continuously differentiable with respect to x on
Q0

1 \ {y}, where Q0
1 means the interior of Q1, as a subset of R

d1 ,

2. for all multiindices α ∈ Nd1

0 with 0 ≤ |α| = α1 + · · · + αd1
≤ s the

α-th partial derivative of k with respect to the x-variables, which we
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denote by Dα
xk(x, y), satisfies the estimate

|Dα
xk(x, y)| ≤ c

{
|x− y|σ−|α| + 1 if σ − |α| 6= 0
| ln |x− y|| + 1 if σ − |α| = 0

(42)

for all x ∈ Q0
1 \ {y}, and

3. for all α ∈ Nd1

0 with 0 ≤ |α| ≤ s the functions Dα
xk(x, y) have contin-

uous extensions to Q1 \ {y}.

We also need to consider the case d1 = 0. Here we put Q1 = {x0}, where x0

is any point of R
d. The set Cs,σ(Q1, Q2) does not depend on s and consists

of all functions k(x0, y) which are Lebesgue measurable in y and satisfy

|k(x0, y)| ≤ c

{
|x0 − y|σ + 1 if σ 6= 0
| ln |x0 − y|| + 1 if σ = 0

(y ∈ Q2 \ {x0}) (43)

for a certain c > 0. For k ∈ Cs,σ(Q1, Q2) let ‖k‖Cs,σ denote the smallest c > 0
satisfying (42) or (43), respectively. It is readily verified that ‖ . ‖Cs,σ is a
norm, which turns Cs,σ(Q1, Q2) into a Banach space. For k ∈ Cs,σ(Q1, Q2)
we denote by Tk the integral operator

(Tkf)(x) =

∫

Q2

k(x, y)f(y)dy (x ∈ Q1)

acting from L∞(Q2) to L∞(Q1) (Tk will also be considered as acting in
various other suitable function spaces, which will be clear from the context
or will be mentioned explicitly). Let us furthermore denote

C∞,σ(Q1, Q2) :=
⋂

s∈N

Cs,σ(Q1, Q2).

Now let M , Q and S be as defined in section 2. By Krasovskij [12], Theorem
3.3 and Corollary, there is a kernel k ∈ C∞,2m−d(Q,Q) such that for all
f ∈ Cκ0(Q) the solution u of (8), (9) satisfies

u(x) =

∫

Q
k(x, y)f(y)dy (x ∈ Q). (44)

Thus, we have, in particular,

(Sf)(x) = (Tkf)(x) (x ∈M),

that means, S = Tk, with Tk : Cr(Q) → L∞(M), and we have to investigate
the approximation of Tkf .
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First we consider the case of simple domains Q1 = [0, 1]d1 and Q2 =
[0, 1]d, where d1 ∈ N0, d ∈ N, d1 ≤ d. We study the approximation of
Tkf with k ∈ Cs,σ(Q1, Q2) a fixed kernel, f ∈ Cr(Q2), and the operator
Tk is considered as acting from Cr(Q2) to L∞(Q1), so we let F = BCr(Q2),
G = L∞(Q1), and Λ = {δx : x ∈ Q2} (for d1 = 0 we consider Q1 = {0} and
the space L∞(Q1) is replaced by C).

Proposition 4. Assume 0 ≤ d1 ≤ d, s ∈ N, s > d1

2 , σ ∈ R, −d < σ < +∞,
r ∈ N. Then there is a constant c > 0 such that for all k ∈ BCs,σ(Q1,Q2) and
n ∈ N with n ≥ 2,

eran
n (Tk, BCr(Q2)) ≤ cn

−min
“

r+d+σ
d1

, r
d
+ 1

2

”

(logn)κ(σ).

where κ(σ) is as defined in (10).

Proof. First we assume d+σ
d1

≥ 1
2 or d1 = d. We represent Tk = S1J , where

J is the identical embedding Cr(Q2) → C(Q2), and S1 is Tk, considered as
an operator from C(Q2) to L∞(Q1). It is well-known that

edet
n (J,BCr(Q2)) ≤ cn−

r
d .

By [9], Theorem 1,

eran
n (S1, BC(Q2)) ≤ cn

−min
“

d+σ
d1

, 1
2

”

(logn)κ(σ)

(the constants in this proof do not depend on k). From Proposition 3,

eran
2n (Tk, BCr(Q2)) ≤ eran

n (S1, BC(Q2))e
det
n (J,BCr(Q2)),

and the desired result follows.
Next we assume d+σ

d1
< 1

2 (which implies d1 6= 0) and d1 < d. Let

m =

⌈
logn

d1

⌉
, (45)

Hl = [0, 1]d1 ×
(
2−l[0, 1]d−d1 \ 2−(l+1)[0, 1]d−d1

)
(l = 0, . . . ,m− 1)

and
Hm = [0, 1]d1 ×

(
2−m[0, 1]d−d1

)
.

Clearly, Q2 =
⋃m

l=0Hl. Put

pl =

⌈
2

“
d1
d
−δ1

”
(m−l)−δ2l

⌉
(0 ≤ l ≤ m), (46)
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where δ1, δ2 ≥ 0 will be fixed later. Note that pm = 1. Let Hl =
⋃nl

i=1Hli

be the partition of Hl into subcubes of mutually disjoint interior and of
sidelength

εl =

{
2−(l+1)p−1

l if 0 ≤ l < m
2−m if l = m.

The number of such cubes is

nl =

{
(2d−d1 − 1) 2d1(l+1)pd

l = c 2d1lpd
l if 0 ≤ l < m

2d1m if l = m.
(47)

Since 1 ≤ d1 < d and m ≥ 1, it follows that nl ≥ 2 for 0 ≤ l ≤ m. Now
let Pl be the composition of tensor product Lagrange interpolation on Hli

of degree max(r − 1, 1) (compare [9], section 2). Then for 0 ≤ l ≤ m,

‖f − Plf‖C(Hl) ≤ cεr
l ≤ c 2−rlp−r

l ‖f‖Cr(Hl). (48)

Let Jl : Cr(Hl) → C(Hl) be the embedding operator. It follows that

edet
c1nl

(Jl, BCr(Hl)) ≤ c 2−rlp−r
l , (49)

where c1 is the number of interpolation nodes in each subcube Hli (this
number depends only on r and d). Define

kl(x, y) = k(x, y)χHl
(y) (x ∈ Q1, y ∈ Q2).

Then kl ∈ Cs,σ(Q1, Q2) and

‖kl‖Cs,σ(Q1,Q2) ≤ ‖k‖Cs,σ(Q1,Q2). (50)

We have

Tk =
m∑

l=0

Tkl
ElJlRl, (51)

where Rl : Cr(Q2) → Cr(Hl) is the restriction operator, El : C(Hl) →
L∞(Q2) is the operator of extension by zero, and Tkl

is considered as an
operator from L∞(Q2) to L∞(Q1). Here L∞(Q2) is the linear space of
all Lebesgue measurable essentially bounded real-valued functions on Q2,
equipped with the seminorm

|f |L∞(Q2) = ess supx∈Q2
|f(x)|.

The space L∞(Q2) consists of functions defined everywhere on Q2. In con-
trast, the normed space L∞(Q1), which appears as the target space of Tk,
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consists of equivalence classes. The reason for this choice is that in L∞(Q2)
function values are defined (while they are not in L∞(Q2)). Define

BL∞(Q2) = {f ∈ L∞(Q2) : |f |L∞(Q2) ≤ 1}.

Put σ1 = d1/2 − d, so that
d+ σ1

d1
=

1

2
.

By assumption, d+σ
d1

< 1
2 , therefore σ1 > σ and σ < 0. Let Q0

1 be the

d1-dimensional interior of Q1, that is, Q0
1 = (0, 1)d1 × {0(d−d1)}. It follows

from (50) that for 0 ≤ l < m, |α| ≤ s, y ∈ Q2, x ∈ Q0
1 \ {y} we have

|Dα
xkl(x, y)| ≤ c|x− y|σ−|α| ≤ c 2(σ1−σ)(l+1)|x− y|σ1−|α|,

since, by definition, kl(x, y) = 0 whenever |x− y| < 2−(l+1). Consequently,

‖kl‖Cs,σ1(Q1,Q2) ≤ c2(σ1−σ)l (0 ≤ l < m). (52)

Next we show that

eran
nl

(Tkl
,BL∞(Q2)) ≤ c2−(d+σ)lp

− d
2

l (lognl)
3

2 (0 ≤ l ≤ m). (53)

Indeed, for 0 ≤ l < m we conclude from (52) and Theorem 1 of [9] that

eran
nl

(Tkl
,BL∞(Q2)) ≤ cn

− 1

2

l 2(σ1−σ)l(lognl)
3

2

≤ c2−
d1l

2 p
− d

2

l 2(
d1
2
−d−σ)l(lognl)

3

2

= c2−(d+σ)lp
− d

2

l (lognl)
3

2 .

For l = m we have by (50) and Theorem 1 of [9],

eran
nm

(Tkm
,BL∞(Q2)) ≤ cn

− d+σ
d1

m (lognm)
d+σ
d1 ≤ c2−(d+σ)m(lognm)

d+σ
d1 ,

which implies (53) also in this case, since pm = 1 and d+σ
d1

< 1
2 . Setting

n̄ = (c1 + 1)
m∑

l=0

nl

with c1 from (49), we conclude from (51) and Proposition 2,

eran
n̄ (Tk, BCr(Q2)) ≤

m∑

l=0

eran
(c1+1)nl

(Tkl
ElJlRl, BCr(Q2)). (54)
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The mapping Rl is of the form (14) with κ = 1, Λ = {δx : x ∈ Q2},
and Λ̃ = {δx : x ∈ Hl}, and satisfies Rl(BCr(Q2)) ⊆ BCr(Hl), hence, by
Proposition 1,

eran
(c1+1)nl

(Tkl
ElJlRl, BCr(Q2)) ≤ eran

(c1+1)nl
(Tkl

ElJl, BCr(Hl)). (55)

Furthermore, by Proposition 3,

eran
(c1+1)nl

(Tkl
ElJl, BCr(Hl)) ≤ eran

nl
(Tkl

El, BC(Hl))e
det
c1nl

(Jl, BCr(Hl)). (56)

The mapping El is also of the form (14) with κ = 1, Λ = {δx : x ∈ Hl}, and
Λ̃ = {δx : x ∈ Q2}, and El(BC(Hl)) ⊆ BL∞(Q2). Consequently,

eran
nl

(Tkl
El, BC(Hl)) ≤ eran

nl
(Tkl

,BL∞(Q2)). (57)

Joining (55), (56), and (57), we get

eran
(c1+1)nl

(Tkl
ElJlRl, BCr(Q2)) ≤ eran

nl
(Tkl

,BL∞(Q2))e
det
c1nl

(Jl, BCr(Hl)).

Together with (54), (49), (53), and (46) we obtain

eran
n̄ (Tk, BCr(Q2)) (58)

≤
m∑

l=0

eran
nl

(Tkl
,BL∞(Q2))e

det
c1nl

(Jl, BCr(Hl))

≤ c
m∑

l=0

2−(r+d+σ)lp
−(r+ d

2)
l (lognl)

3

2

≤ cm
3

2

m∑

l=0

2
−(r+d+σ−δ2(r+ d

2))l−(r+ d
2)

“
d1
d
−δ1

”
(m−l)

. (59)

Moreover, using (47), (46), and (45), we get

n̄ = (c1 + 1)
m∑

l=0

nl ≤ c
m∑

l=0

2d1l
(
2d1(m−l)−δ1d(m−l)−δ2dl + 1

)

≤

{
c2d1m ≤ cn if δ1 > 0 or δ2 > 0
cm2d1m ≤ cn logn if δ1 = δ2 = 0.

(60)

Now we derive the final estimates. First we consider the case r + d + σ >
(r + d

2)d1

d , that is, r+d+σ
d1

> r
d + 1

2 . Here we choose δ1 = 0 and δ2 > 0 so
small that we still have

r + d+ σ − δ2

(
r +

d

2

)
>

(
r +

d

2

)
d1

d
.
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Hence, from (59) and (45),

eran
n̄ (Tk, BCr(Q2)) ≤ cm

3

2 2−(r+ d
2)

d1
d

m = cm
3

2 2−( r
d
+ 1

2)d1m

≤ cn−( r
d
+ 1

2)(logn)
3

2 .

This together with (60), the monotonicity of the numbers eran
n in n, and a

suitable scaling gives

eran
n (Tk, BCr(Q2)) ≤ cn−( r

d
+ 1

2)(logn)
3

2 .

Next we assume r + d+ σ = (r + d
2)d1

d and put δ1 = δ2 = 0. By (59),

eran
n̄ (Tk, BCr(Q2)) ≤ cm

5

2 2−(r+ d
2)

d1
d

m = cm
5

2 2−( r
d
+ 1

2)d1m

≤ cn−( r
d
+ 1

2)(logn)
5

2 .

By (60) and scaling,

eran
n (Tk, BCr(Q2)) ≤ cn−( r

d
+ 1

2)(logn)
r
d
+3.

Finally, if r + d+ σ < (r + d
2)d1

d , we set δ2 = 0 and choose δ1 > 0 so that

r + d+ σ <

(
r +

d

2

)(
d1

d
− δ1

)
.

From (59),

eran
n̄ (Tk, BCr(Q2)) ≤ cm

3

2 2−(r+d+σ)m ≤ cn
− r+d+σ

d1 (logn)
3

2 .

which implies

eran
n (Tk, BCr(Q2)) ≤ cn

− r+d+σ
d1 (logn)

3

2

and completes the proof.

Proof of the upper bound in Theorem 1. We prove a slightly stronger state-
ment: We show that the upper bound holds even for the smaller sets of infor-
mation functionals Λ = {δx : x ∈ Q}. Let M and Q be as defined in section
2. Let k ∈ C∞,2m−d(Q,Q) be such that (44) holds. Let Ux,Φx (x ∈ M) be
as required for M being a C∞ submanifold of Q. We let

W ′
x =

{
W ′

+ if x ∈M ∩ ∂Q

W ′ if x ∈M ∩Q0.
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Then we have Φx(W ′
x) = Ux ∩Q. Furthermore, we set

V ′
x =

{
[0, 1/2] × [−1/2, 1/2]d−1 if x ∈M ∩ ∂Q

[−1/2, 1/2]d if x ∈M ∩Q0.

Put Vx = Φx(V ′
x). Clearly M ⊆

⋃
x∈M Vx, and since the set M is com-

pact, we can choose a finite set {x1, . . . , xp} such that Vx1
, . . . , Vxp cover

M . For simplicity of notation we replace the subscript xi by i, thus writing
Φi, Ui, Vi, V

′
i ,W

′
i . Set Mi = M ∩ Vi and M ′

i = Φ−1
i (Mi). Then

M ′
i = {y ∈ V ′

i : yd1+1 = · · · = yd = 0}. (61)

Let
Ci = Mi \

⋃

j<i

Mj

and denote the operator from L∞(Ci) to L∞(M) of extension by zero on
M \ Ci by Ei. Now fix 1 ≤ i ≤ p. For f ∈ Cr(Q) and x ∈ Ci we have

(Tkf)(x) =

∫

Ui∩Q
k(x, y)f(y)dy +

∫

Q\Ui

k(x, y)f(y)dy. (62)

The first summand can be transformed as follows: Let x′ = Φ−1
i (x).

∫

Ui∩Q
k(x, y)f(y)dy =

∫

W ′

i

k(Φi(x
′),Φi(y

′))f(Φi(y
′))|det(JΦi

)(y′)|dy′

=

∫

W ′

i

k′i(x
′, y′)f ′i(y

′)dy′ = (Tk′

i
f ′i)(x

′)

= (Tk′

i
f ′i)(Φ

−1
i (x)) = (XiTk′

i
Yif)(x), (63)

where we defined for z′ ∈M ′
i , y

′ ∈W ′
i ,

k′i(z
′, y′) = k(Φi(z

′),Φi(y
′))|det(JΦi

(y′))|,

f ′i(y
′) = f(Φi(y

′)),

furthermore, Xi : L∞(M ′
i) → L∞(Ci) for g ∈ L∞(M ′

i) by

(Xig)(z) = g(Φ−1
i (z)) (z ∈ Ci),

Yi : Cr(Q) → Cr(W ′
i ) for f ∈ Cr(Q) by

(Yif)(z′) = f(Φi(z
′)) (z′ ∈W ′

i ),
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and the integral operator Tk′

i
is considered as acting from Cr(W ′

i ) to L∞(M ′
i).

Observe that
k′i ∈ C∞,2m−d(M ′

i ,W
′
i ), (64)

Xi and Yi are bounded linear operators, and ‖Xi‖ ≤ 1.
Now we consider the second term of (62), for f ∈ Cr(Q) and x ∈ Ci.

∫

Q\Ui

k(x, y)f(y)dy =

∫

Q\Ui

k(Φi(x
′), y)f(y)dy

=

∫

Q\Ui

k′′i (x′, y)f(y)dy

= (Tk′′

i
Zif)(x′) = (XiTk′′

i
ZiJf)(x). (65)

Here
k′′i (z′, y) = k(Φi(z

′), y) (z′ ∈M ′
i , y ∈ Q \ Ui),

J : Cr(Q) → C(Q) is the identical embedding, Zi : C(Q) → C(Q \ Ui) the
operator of restriction from Q to Q \Ui, the operator Tk′′

i
is considered as a

mapping from C(Q \ Ui) to L∞(M ′
i), and Xi was defined above. We have

k′′i ∈
⋂

σ>0

C∞,σ(M ′
i , Q \ Ui), (66)

since by construction, Mi = Φi(M
′
i) is closed and contained in the interior

of Ui. From (62), (63), and (65) we get for f ∈ Cr(Q) and x ∈ Ci,

(Tkf)(x) = (XiTk′

i
Yif)(x) + (XiTk′′

i
ZiJf)(x),

hence we obtained the following representation

Tk =

p∑

i=1

EiXiTk′

i
Yi +EiXiTk′′

i
ZiJ. (67)

Therefore, by Proposition 2,

eran
3pn(Tk, BCr(Q))

≤

p∑

i=1

eran
3n (EiXiTk′

i
Yi + EiXiTk′′

i
ZiJ,BCr(Q))

≤

p∑

i=1

(
eran
n (EiXiTk′

i
Yi, BCr(Q)) + eran

2n (EiXiTk′′

i
ZiJ,BCr(Q))

)
.
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Since Yi is of the form (14), with κ = 1, Λ = {δx : x ∈ Q}, and Λ̃ = {δx′ :
x′ ∈ W ′

i}, moreover, Yi(BCr(Q)) ⊆ ‖Yi‖BCr(W ′

i )
and ‖EiXi‖ ≤ 1, we have

by Proposition 1,

eran
n (EiXiTk′

i
Yi, BCr(Q)) ≤ eran

n (Tk′

i
, ‖Yi‖BCr(W ′

i )
)

= ‖Yi‖e
ran
n (Tk′

i
, BCr(W ′

i )
).

Furthermore, by Proposition 3,

eran
2n (EiXiTk′′

i
ZiJ,BCr(Q))

≤ eran
n (EiXiTk′′

i
Zi, BC(Q))e

det
n (J,BCr(Q)).

Moreover, Zi also has the form (14), with κ = 1, Λ = {δx : x ∈ Q}, and
Λ̃ = {δx : x ∈ Q \ Ui}, and Zi(BC(Q)) ⊆ BC(Q\Ui), so Proposition 1 gives

eran
n (EiXiTk′′

i
Zi, BC(Q)) ≤ eran

n (Tk′′

i
, BC(Q\Ui)).

Thus we obtain

eran
3pn(Tk, BCr(Q))

≤ c

p∑

i=1

(
eran
n (Tk′

i
, BCr(W ′

i )
)

+eran
n (Tk′′

i
, BC(Q\Ui))e

det
n (J,BCr(Q))

)
. (68)

It is easily seen that Tk′

i
can be split into the sum of 2d−d1 operators of

the required form for Proposition 4 (just split W ′
i into respective pieces and

apply a scaling). Hence we conclude from (64) and Proposition 4 that

eran
n (Tk′

i
, BCr(W ′

i
)) ≤ n

−min
“

r+2m
d1

, r
d
+ 1

2

”

(logn)κ(2m−d), (69)

where κ(2m− d) is defined in (10). Moreover,

edet
n (J,BCr(Q)) ≤ cn−

r
d , (70)

see, e.g., [20]. Furthermore, from (66) and Theorem 1 of [9],

eran
n (Tk′′

i
, BC(Q\Ui)) ≤ cn−

1

2 . (71)

Relations (68)–(71) finally give

eran
3pn(Tk, BCr(Q)) ≤ cn

−min
“

r+2m
d1

, r
d
+ 1

2

”

(logn)κ(2m−d),

and, since p is a constant, rescaling gives the desired result.
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5 Lower Bounds

In this section we prove the lower bounds in Theorem 1. Let again M and
Q be as defined in section 2 and k ∈ C∞,2m−d(Q,Q) be such that (44) holds.
We have M ∩Q0 6= ∅. Indeed, for d1 ≥ 1 this follows from the definition of
M , while for d1 = 0 we assumed that M consists of a single point, which is
an inner point of Q. So let x0 ∈M ∩Q0. Choose any function u0 ∈ C∞(Q)
with all derivatives vanishing on ∂Q and u0(x0) 6= 0, and set f0 = L u0.
Then f0 ∈ Cr(Q) and (Sf0)(x0) 6= 0. Hence, there must be a y0 ∈ Q0,
y0 6= x0 such that k(x0, y0) 6= 0. Since k(x, y) is infinitely differentiable in
both variables for x 6= y (see [12], Theorem 3.3 and Corollary), there is a
closed neighborhood U0 ⊂ Q of x0, a cube V ⊂ Q with U0 ∩ V = ∅ and a
ϑ 6= 0 such that Re(ϑk(x, y)) ≥ 1 for x ∈ U0, y ∈ V . Define

h(y) =





(∫
M∩U0

k(x, y) dx
)−1

if d1 ≥ 1

k(x0, y)
−1 if d1 = 0

(y ∈ V ),

where the integral is taken with respect to the surface measure of M . Note
that h(y) is an infinitely differentiable function on V . Let Cr

0(V ) be the
subspace of Cr(V ) consisting of those functions whose partial derivatives up
to the order r vanish on ∂V . Define X0 : Cr

0(V ) → Cr(Q) by

(X0f)(y) =

{
h(y)f(y) if y ∈ V
0 if y 6∈ V,

furthermore, Y0 : L∞(M) → C by

Y0g =

∫

M∩U0

g(x) dx

(if d1 = 0, we replace L∞(M) by C, and let Y0 be the identity), and S1 :
Cr

0(V ) → C as

S1f =

∫

V
f(y) dy.

Then we have

Y0SX0f =

∫

M∩U0

∫

V
k(x, y)h(y)f(y) dydx

=

∫

V
f(y)h(y)

∫

M∩U0

k(x, y) dxdy

=

∫

V
f(y) dy = S1f (72)

33



(with the obvious modifications for d1 = 0). Moreover, X0 and Y0 are
bounded linear operators, thus, in particular, X0(BCr

0
(V )) ⊆ ‖X0‖BCr(Q),

and X0 is of the form (14) with Λ = {δα
x : x ∈ V 0, |α| ≤ r}, Λ̃ = {δα

x :
x ∈ Q, |α| ≤ r}, and κ is the number of multiindices α ∈ N

d
0 with |a| ≤ r.

Consequently, by Proposition 1 and (72), with $ ∈ {det, ran},

e$
κn(S1, BCr

0
(V )) ≤ ‖Y0‖e

$
n (S, ‖X0‖BCr(Q))

= ‖X0‖‖Y0‖e
$
n (S,BCr(Q)).

It is well-known that

edet
κn (S1, BCr

0
(V )) ≥ cn−

r
d

eran
κn (S1, BCr

0
(V )) ≥ cn−

r
d
− 1

2 .

Thus we conclude

edet
n (S,BCr(Q))) ≥ cn−

r
d

eran
n (S,BCr(Q)) ≥ cn−

r
d
− 1

2 .

This proves the lower bound in the deterministic setting and in the random-
ized setting for the case r

d + 1
2 ≤ r+2m

d1
(including the case d1 = 0).

Now we assume d1 ≥ 1 and present another reduction, which will prove
the remaining part. Let again x0 ∈ M ∩ Q0 and let U = Ux0

and Φ = Φx0

be as described in the definition of a C∞ submanifold. Let M0 = U ∩M .
So Φ−1 takes U to W ′ = [−1, 1]d and M0 to

{y ∈W ′ : yd1+1 = · · · = yd = 0} = M ′
0.

We identify M ′
0 with [−1, 1]d1. Let Cr+2m

0 (M ′
0) be the space of functions in

Cr+2m(M ′
0) which vanish together with all partial derivatives up to order

r+2m on ∂M ′
0 (the boundary of M ′

0, considered as a subset of R
d1). Define

Cr+2m
0 (W ′) and Cr+2m

0 (Q) in the same way.
We define an operator E : Cr+2m

0 (M ′
0) → Cr+2m

0 (W ′) as follows. If
d1 < d, we choose a C∞ function ψ with support in (−1, 1)d−d1 and ψ(0) = 1.
For g ∈ Cr+2m

0 (M ′
0), we let

(Eg)(x) = g(x1)ψ(x2), (73)

where x = (x1, x2) ∈ W ′, x1 ∈ [−1, 1]d1 , x2 ∈ [−1, 1]d−d1. If d1 = d, then
M ′

0 = W ′, and we let E be the identity. Furthermore, we define the operator
X : Cr+2m

0 (W ′) → Cr+2m
0 (Q) by

(Xf)(x) =

{
f(Φ−1(x)) if x ∈ U
0 otherwise

(
f ∈ Cr+2m

0 (W ′), x ∈ Q
)
,
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and Y : L∞(M) → L∞(M ′
0) by

(Y g)(y) = g(Φ(y))
(
g ∈ L∞(M), y ∈M ′

0

)
.

The operators E, X, and Y are bounded and linear, moreover, ‖Y ‖ ≤
1. With L being the differential operator defined in (6) we consider the
composition Y SLXE:

Cr+2m
0 (M ′

0)
E
−→ Cr+2m

0 (W ′)
X
−→ Cr+2m

0 (Q)

L
−→ Cr(Q)

S
−→ L∞(M)

Y
−→ L∞(M ′

0).

Let

Z1 : Cr+2m
0 (Q) → L∞(M)

Z2 : Cr+2m
0 (W ′) → L∞(M ′

0)

be the operators of restriction to M and M ′
0, respectively. Let, furthermore,

J : Cr+2m
0 (M ′

0) → L∞(M ′
0) be the identical embedding. By the definitions,

SL = Z1

Y Z1X = Z2

Z2E = J.

This gives
Y SLXE = Y Z1XE = Z2E = J. (74)

Next we want to reduce J to S, thus we consider

Λ = {δα
x : x ∈ (M ′

0)
0, α ∈ N

d1

0 , |α| ≤ r + 2m}

and
Λ̃ = {δα

x : x ∈ Q, α ∈ N
d
0, |α| ≤ r}.

The operator LXE satisfies

LXE
(
BCr+2m

0
(M ′

0
)

)
⊆ cBCr(Q) (75)

and is of the form (14). To see the latter, consider the mapping Φ−1 : U →
W ′ and denote its components as follows:

Φ−1(x) = (θ1(x), θ2(x)),
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where θ1 : U → [−1, 1]d1 and θ2 : U → [−1, 1]d−d1 are the respective induced
C∞ mappings (if d1 = d, the second component is dropped). Now we note
that for f ∈ Cr+2m

0 (M ′
0)

(LXEf)(x) =

{ ∑
|α|≤2m aα(x)Dα

(
f(θ1(x))ψ(θ2(x))

)
if x ∈ U

0 if x 6∈ U

(with ψ(θ2(x)) replaced by 1 in the case d1 = d). Therefore we have, with
β ∈ N

d
0, |β| ≤ r, and x ∈ Q

δβ
x (LXEf) =

{
Dβ

∑
|α|≤2m aα(x)Dα

(
f(θ1(x))ψ(θ2(x))

)
if x ∈ U

0 if x 6∈ U.

It is readily checked by induction and elementary calculus that there are C∞

functions hγ on U (γ ∈ N
d1

0 , |γ| ≤ r+ 2m) such that for all f ∈ Cr+2m
0 (M ′

0)

δβ
x (LXEf) =

{ ∑
|γ|≤r+2m hγ(x)(Dγf)(θ1(x)) if x ∈ U

0 if x 6∈ U.

It follows that LXE is of the form (14). From Proposition 1 and (75) we
obtain

eran
c1n

(
Y SLXE,BCr+2m

0
(M ′

0
)

)
≤ ‖Y ‖eran

n

(
S, cBCr(Q)

)
≤ ceran

n

(
S,BCr(Q)

)
,

where c1 ∈ N is the number of multiindices γ ∈ N
d1

0 with |γ| ≤ r + 2m.
Together with (74) this yields,

eran
c1n

(
J,BCr+2m

0
(M ′

0
)

)
≤ ceran

n

(
S,BCr(Q)

)
.

On the other hand, it is well-known that

eran
c1n

(
J,BCr+2m

0
(M ′

0
)

)
≥ cn−(r+2m)/d1.

Consequently,
eran
n

(
S,BCr(Q)

)
≥ cn−(r+2m)/d1,

concluding the proof of the lower bounds.
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