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Abstract We survey recent results on the approximation of functions from
Sobolev spaces by stochastic linear algorithms based on function values. The
error is measured in various Sobolev norms, including positive and negative
degree of smoothness. We also prove some new, related results concerning in-
tegration over Lipschitz domains, integration with variable weights, and study
tractability of generalized versions of indefinite integration and discrepancy.

1 Introduction and preliminaries

In this paper we survey and discuss recent results from [5, 6, 7, 8] and prede-
cessors thereof, from a unifying point of view of approximation of functions
by linear algorithms based on function values. The functions belong to a cer-
tain Sobolev space and the error is measured in the norm of another Sobolev
space. The emphasis lies on stochastic approximation, but we also include
the deterministic counterparts. We discuss upper and lower bounds, hence
the complexity of approximation, and compare the deterministic and ran-
domized setting. The algorithms that reach the optimal rates are explained
in detail.

The paper also contains a number of new results which are related to the
known ones surveyed here. This includes the optimal order of the error of ran-
domized integration of functions from Sobolev classes over general bounded
Lipschitz domains, weighted integration with variable weights from Sobolev
classes, approximation in certain spaces of functions with dominating mixed
derivatives, and a result on the dimension-dependence (tractability) of gen-
eralized versions of indefinite integration and discrepancy.

Stefan Heinrich
Department of Computer Science, University of Kaiserslautern, D-67653 Kaiser-
slautern, Germany, e-mail: heinrich@informatik.uni-kl.de

1



2 Stefan Heinrich

Let d ∈ N := {1, 2, . . .}, N0 := N ∪ {0}, let K stand for the field of reals
R or complex numbers C. We always consider K-valued functions and linear
spaces over K, with K being the same for all the spaces involved. For a Banach
space X the unit ball {x ∈ X : ‖x‖ ≤ 1} is denoted by BX and the dual
space by X∗. Given another Banach space Y , the space of bounded linear
operators from X to Y is denoted by L (X,Y ). Throughout the paper log
means log2. Furthermore, we often use the same symbol c, c1, . . . for possibly
different positive constants, also when they appear in a sequence of relations.

Let (G,G, µ) be a measure space. For 1 ≤ p ≤ ∞, let Lp(G,µ) be the space
of K-valued p-integrable functions, equipped with the usual norm

‖f‖Lp(G,µ) =

(∫

G

|f(x)|pdµ(x)

)1/p

if p <∞, and
‖f‖L∞(G,µ) = ess supx∈G|f(x)|.

Let Q ⊂ Rd be a bounded Lipschitz domain, i.e., for d = 1 a finite union of
bounded open intervals with disjoint closure, and for d ≥ 2 a bounded open
set with locally Lipschitz boundary. If µ is the Lebesgue measure on Q, we
write Lp(Q) instead of Lp(Q,µ). Let C(Q̄) denote the space of continuous
functions on the closure Q̄ of Q, equipped with the supremum norm. For
r ∈ N0 and 1 ≤ p ≤ ∞ we introduce the Sobolev space

W r
p (Q) = {f ∈ Lp(Q) : Dαf ∈ Lp(Q), |α| ≤ r},

where α = (α1, . . . , αd) ∈ Nd0, |α| :=
∑d

j=1 αj , and Dαf is the generalized
partial derivative. The norm on W r

p (Q) is defined as

‖f‖W r
p (Q) =





∑

|α|≤r

‖Dαf‖pLp(Q)





1/p

if p <∞, and
‖f‖W r

∞
(Q) = max

|α|≤r
‖Dαf‖L∞(Q).

Observe that for r = 0, W 0
p (Q) is just Lp(Q).

For basic notions concerning the randomized setting of information-based
complexity – the framework we use here – we refer to [14, 20, 4]. The partic-
ular notation applied here can be found in [6].

First we consider deterministic algorithms. Let G be a nonempty set, let
F(G) denote the linear space of all K-valued functions on G and let Y be
a Banach space. Given a nonempty subset F ⊆ F(G), the class of linear
deterministic algorithms Adet

n (F, Y ) consists of all linear operators from F(G)
to Y of the form
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Af =
n
∑

i=1

f(xi)ψi

with xi ∈ G and ψi ∈ Y . Let S : F → Y be any mapping. The error of
A ∈ Adet

n (F, Y ) as an approximation of S is defined as

e(S,A, F, Y ) = sup
f∈F

‖Sf −Af‖Y

and the deterministic n-th minimal error as

edet
n (S, F, Y ) = inf

A∈Adet
n (F,Y )

e(S,A, F, Y ).

Hence, no deterministic linear algorithm that uses at most n function values
can provide a smaller error than edet

n (S, F, Y ). The quantities edet
n (S, F, Y )

were also called linear sampling numbers [15].
Next we introduce linear randomized sampling algorithms. This is a little

more technical since we want these algorithms to act also on spaces of equiv-
alence classes of functions, where function values itself may not be defined.
Here we let, in addition to the above, G be a σ-algebra of subsets of G, µ
a nonnegative, σ-additive, σ-finite measure on (G,G) with µ(G) > 0. Let
F ⊆ L0(G,µ) be a nonempty subset, where L0(G,µ) is the linear space of
equivalence classes of G-measurable functions on G, with the usual equiva-
lence of being equal except on a set of µ-measure zero.

For n ∈ N we consider the following class of randomized linear algorithms
from F to Y . An element

A ∈ Aran
n (F, Y )

is a tuple
A = ((Ω,Σ,P), (Aω)ω∈Ω),

where (Ω,Σ,P) is a probability space,

Aω ∈ Adet
n (F(G), Y ) (ω ∈ Ω),

thus

Aωf =

n
∑

i=1

f(xiω)ψiω (ω ∈ Ω),

and the following two properties hold:

1. (Consistency) If f0 and f1 are representatives of the same class f ∈ F ,
then

Aωf0 = Aωf1 (P − almost surely). (1)

2. (Measurability) For each f ∈ F and each representative f0 of f , the map-
ping

ω ∈ Ω → Aωf0 ∈ Y is Σ-to-Borel measurable (2)
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and essentially separably valued, i.e., there is a separable subspace Y0 ⊆ Y
such that

Aωf0 ∈ Y0 (P − almost surely). (3)

Let again S : F → Y be any mapping. The error of an algorithm A ∈
Aran
n (F, Y ) as an approximation to S on F is defined as

e(S,A, F, Y ) = sup
f∈F

E ‖Sf −Aωf‖Y .

The randomized n-th minimal error of S is defined as

erann (S, F, Y ) = inf
A∈Aran

n (F,Y )
e(S,A, F, Y ).

It follows that no randomized linear algorithm that uses at most n function
values can have a smaller error than erann (S, F, Y ). Note that the definition
involves the first moment. This way lower bounds have the strongest form,
because respective bounds for higher moments follow by Hölder’s inequality.
Upper bounds for concrete algorithms are stated in a form which includes
possible estimates of higher moments.

We need some notions and facts from probability theory in Banach spaces.
Let 1 ≤ p ≤ 2. An operator T ∈ L (X,Y ) is said to be of type p if there is a
constant c > 0 such that for all n ∈ N and all sequences (gi)

n
i=1 ⊂ X ,

E

∥

∥

∥

n
∑

i=1

εiTgi

∥

∥

∥

p

≤ cp
n
∑

i=1

‖gi‖p, (4)

where (εi) is a sequence of independent random variables on some probability
space (Ω,Σ,P) with P{εi = 1} = P{εi = −1} = 1/2. The type p constant
τp(T ) of the operator T is defined to be the smallest c > 0 such that (4)
holds. We put τp(T ) = ∞ if T is not of type p. Each operator is of type 1.
A Banach space X is of type p iff the identity operator of X is of type p.
We write τp(X) for the type p constant of the identity operator of X . For
1 ≤ p <∞ the spaces ℓnp are uniformly of type min(p, 2), meaning that there
is a constant c(p) > 0 such that for all n ∈ N we have τmin(p,2)(ℓ

n
p ) ≤ c(p). For

p = ∞ there is a constant c(∞) > 0 such that τ2(ℓ
n
∞) ≤ c(∞)(log n + 1)1/2

for all n ∈ N. We refer to [12], ch. 9 for definitions and basic facts on the type
of Banach spaces, from which the operator analogues easily follow.

We will use the following result, see [8], Lemma 3.2. (the Banach space
case of which with p1 = p is contained in Proposition 9.11 of [12]).

Lemma 1. Let 1 ≤ p ≤ 2, p ≤ p1 < ∞. Then there is a constant c =
c(p, p1) > 0 such that for all Banach spaces X,Y , each operator T ∈ L (X,Y )
of type p, each n ∈ N and each sequence of independent, mean zero X-valued
random variables (ηi)

n
i=1 with E ‖ηi‖p1 <∞ (1 ≤ i ≤ n) the following holds:
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(

E

∥

∥

∥

n
∑

i=1

Tηi

∥

∥

∥

p1

)1/p1

≤ cτp(T )

(

n
∑

i=1

(

E ‖ηi‖p1
)p/p1

)1/p

.

2 Approximation of the embedding
J : W r

p
(Q) → W s

q
(Q) with s ≥ 0

In this section we consider approximation of the embedding J : W r
p (Q) →

W s
q (Q). By the Sobolev embedding theorem, [1], Th. 5.4, J is continuous if

1 ≤ q <∞ and r−s
d ≥

(

1
p − 1

q

)

+

or
q = ∞, 1 < p <∞, and r−s

d > 1
p

or
q = ∞, p ∈ {1,∞}, and r−s

d ≥ 1
p .



























(5)

We shall study edet
n (J,BW r

p (Q),W
s
p (Q)) and erann (J,BW r

p (Q),W
s
p (Q)), so we

want to approximate functions from W r
p (Q) in the norm of W s

q (Q) by de-
terministic or randomized linear sampling algorithms based on n function
values.

We also need the so-called embedding condition, ensuring that W r
p (Q)

is continuously embedded into C(Q̄) (meaning that each equivalence class
contains a continuous representative). This holds if and only if

p = 1 and r/d ≥ 1
or

1 < p ≤ ∞ and r/d > 1/p,







(6)

see [1], Ch. 5. In these cases function values at points of Q are well-defined
and deterministic algorithms as introduced in section 1 make sense.

In its full generality, the following was shown in [6], Theorem 3.1 and
Theorem 4.2.

Theorem 1. Let r, s ∈ N0, 1 ≤ p, q ≤ ∞, let Q be a bounded Lipschitz
domain and assume that (5) is satisfied. Then there are constants c1−6 > 0
such that for all n ∈ N the following holds. In the deterministic setting, if the
embedding condition (6) is fulfilled, then

c1n
− r−s

d
+( 1

p
− 1

q )
+ ≤ edet

n (J,BW r
p (Q),W

s
q (Q)) ≤ c2n

− r−s
d

+( 1
p
− 1

q )
+ ,

and if the embedding condition is not fulfilled, then
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c3 ≤ edet
n (J,BW r

p (Q) ∩ C(Q̄),W s
q (Q)) ≤ c4.

In the randomized setting we have

c5n
− r−s

d
+( 1

p
− 1

q )
+ ≤ erann (J,BW r

p (Q),W
s
q (Q)) ≤ c6n

− r−s
d

+( 1
p
− 1

q )
+ ,

independently of the embedding condition.

To explain the occurring exponent in a few words: we can consider n−(r−s)/d

as a ’reward’ for decay in smoothness by going from W r
p (Q) to W s

q (Q), while

n1/p−1/q is the ’price’ we have to pay for the improvement of summability
from p to q if p < q.

In various particular aspects and special cases Theorem 1 has many au-
thors.

1. Deterministic setting, the embedding condition (6) holds:
For simple domains as Q = (0, 1)d and s = 0, the bounds are classical
approximation theory. For Q = (0, 1)d and s > 0, see Vyb́ıral [22]. The
general case of Lipschitz domains for s = 0 is due to Novak and Triebel
[15]. The case of Lipschitz domains for s > 0 was obtained in [6], solving
Problem 18 posed by Novak and Woźniakowski in [16].

2. Deterministic setting, the embedding condition (6) does not hold:
This means, function values are not well-defined, so, formally, determinis-
tic algorithms make no sense. However, we may just slightly restrict the
class by considering BW r

p (Q) ∩C(Q̄) to make function values well-defined.

Note that by considering BW r
p (Q) ∩ C(Q̄) we do not impose a C(Q̄) norm

restriction, we only demand that the function is continuous, but it can
have an arbitrary large C(Q̄) norm. Such functions are dense in BW r

p (Q)

in the norm of W r
p (Q) (see [1], Theorem 3.18).

Although function values are now well-defined, the result above shows
that no deterministic algorithm can have an error converging to zero. This
result was already proved in [5] for the cube.

3. Randomized setting, the embedding condition (6) holds:
The upper bound follows from the deterministic setting. The lower bound
was shown by Wasilkowski in [23] (p = q = ∞), Novak [14] (1 ≤ p ≤
∞, q = ∞), and Mathé [13] (1 ≤ p, q ≤ ∞). It follows that in the case of
the embedding condition deterministic and stochastic algorithms have the
same optimal rate, that is, randomization does not provide a speedup.

4. Randomized setting, the embedding condition (6) does not hold:
This was shown in [6]. Comparing deterministic and randomized setting
we see that in this case randomization can give a speedup of up to n−β for
any β with 0 < β < 1. Indeed, for p = q = 1, s = 0, the maximal exponent
of the speedup is r/d, which can be arbitrarily close to 1.

Let us describe the algorithm behind Theorem 1, following essentially the
exposition in [6]. Fix parameters ρ ∈ N0, ρ ≥ r − 1, and 0 ≤ δ < 1, let Pρ
denote the space of polynomials on Rd of degree not exceeding ρ, and let
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P : F(Rd) → F(Rd) be the d-fold tensor product of Lagrange interpolation
on [0, 1 − δ] of degree ρ, hence

Pf =

κ
∑

j=1

f(yj)ψj ,

with (yj)
κ
j=1 ∈ [0, 1 − δ]d and (ψj)

κ
j=1 the respective Lagrange polynomials.

We have
Pg = g (g ∈ Pρ). (7)

Let ξ = ξ(ω) (ω ∈ Ω) be a uniformly distributed on [0, 1]d random variable
on a complete probability space (Ω,Σ,P). For ω ∈ Ω define the operator
Pω : F([0, 1]d) → F(Rd) by setting for f ∈ F([0, 1]d)

(Pωf) (x) =

κ
∑

j=1

f(yj + δξ(ω))ψj(x− δξ(ω)) (x ∈ Rd). (8)

Note that if δ = 0, then Pω is deterministic, i.e., does not depend on ω. It
follows from (7) that

Pωg = g (g ∈ Pρ, ω ∈ Ω). (9)

We include Q into any axis-parallel cube Q̃,

Q ⊂ Q̃ = x0 + [0, b]d,

and partition Q̃ into closed subcubes of sidelength b2−l and of disjoint interior

Q̃ =

2dl

⋃

i=1

Qli.

For l ∈ N0 we define the scaling operators Eli, Rli : F(Rd) → F(Rd) for
f ∈ F(Rd) and x ∈ Rd by

(Elif)(x) = f(xli + b2−lx)

and
(Rlif)(x) = f(b−12l(x− xli)),

where xli denote the point in Qli with minimal coordinates. Note that Eli
scales functions with support in Qli to functions with support in [0, 1]d, and
Rli is the inverse of Eli.

Define

Il = {i : 1 ≤ i ≤ 2dl, Qli ⊆ Q},
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the set if indices of cubes completely contained in Q, and

Kl = {k : 1 ≤ k ≤ 2dl, Qlk ∩Q 6= ∅},

the set of indices of cubes intersecting Q. So we have

⋃

i∈Il

Qli ⊂ Q ⊂
⋃

k∈Kl

Qlk. (10)

Let B(x, ρ) denote the closed and B0(x, ρ) the open Euclidean ball of radius
ρ around x ∈ Rd. Based on the geometry of the Lipschitz property of Q the
following was shown in [7], Lemma 3.1, see also [6], Lemma 3.2.

Lemma 2. There are constants a > b
√
d and l0 ∈ N0 such that for all l ≥ l0

⋃

k∈Kl

Qlk ⊆
⋃

i∈Il

B(xli, a2
−l).

Using this lemma one can construct a suitable partition of unity on Q. Let
σ ∈ N0, σ ≥ s, and denote the space of functions possessing continuous,
bounded partial derivatives up to order σ on Rd by Cσ(Rd). Let η ∈ Cσ(Rd)
be such that supp (η) ⊆ B0(0, 2a/b), η ≥ 0, and η > 0 on B(0, a/b). We can
choose η to be a polynomial on some ball around 0, for example

η(x) =















(

9a2

4b2
−

d
∑

i=1

x2
i

)σ+1

if |x| ≤ 3a
2b

0 otherwise.

By Lemma 2, there exists a constant c > 0 such that for l ≥ l0
∑

j∈Il

Rljη(x) ≥ c (x ∈ Q).

Define the functions ηli (i ∈ Il, l ≥ l0) on Q by

ηli(x) =
Rliη(x)

∑

j∈Il
Rljη(x)

(x ∈ Q).

These functions satisfy

ηli(x) = 0 (x ∈ Q \B(xli, a2
−l+1))

and
∑

i∈Il

ηli(x) = 1 (x ∈ Q).

Now we define for l ≥ l0 and ω ∈ Ω the operator P
(0)
l,ω : F(Q) → Cσ(Q) by
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P
(0)
l,ω f =

∑

i∈Il

ηli(RliPωElif)|Q (f ∈ F(Q)).

Setting for l ≥ l0, i ∈ Il, 1 ≤ j ≤ κ, and ω ∈ Ω

ylijω = xli + b 2−l(yj + δξ(ω)) (11)

and
ψlijω(x) = ψj(b

−12l(x− xli) − δξ(ω)), (12)

we can finally write P
(0)
l,ω f as

P
(0)
l,ω f =

∑

i∈Il

κ
∑

j=1

f(ylijω)ηliψlijω .

This completes the description of the algorithm leading to the upper bound
in Theorem 1.

The algorithm above uses the partition of unity for smoothing the local
approximations. In the case s = 0 the target space is Lq(Q) and we do not
need smoothing. In view of the application to integration given in the next
section, we want to discuss this case in more detail and introduce a simpler
algorithm. Using Lemma 2, we choose for l ≥ l0 any partition

Kl =
⋃

i∈Il

Kli (13)

with

i ∈ Kli (i ∈ Il), (14)

Qlk ⊆ B(xli, a2
−l) (k ∈ Kli), (15)

Kli ∩ Klj = ∅ (i, j ∈ Il, i 6= j). (16)

In other words, each cube Qlk which intersects Q is associated with some
cube Qli which is not far from Qlk and lies completely inside Q. The union
of all cubes associated with Qli is denoted by

Q̃li =
⋃

k∈Kli

Qlk. (17)

Now we proceed as follows. We apply approximating operators locally to
the Qli with i ∈ Il and use the result (which is a polynomial defined on all
of Rd) for all the associated cubes Qlk with k ∈ Kli, that is, for the region

Q̃li. For l ≥ l0 and ω ∈ Ω we define P
(1)
l,ω : F(Q) → Lq(Q) by

P
(1)
l,ω f =

∑

i∈Il

χQ̃li∩Q
RliPωElif (f ∈ F(Q)), (18)
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which we can write as

P
(1)
l,ω f =

∑

i∈Il

κ
∑

j=1

f(ylijω)χQ̃li∩Q
ψlijω , (19)

with the ylijω and ψlijω given by (11) and (12). Consistency (1) of
(

P
(1)
l,ω

)

ω∈Ω
is readily checked. As to measurability, note that we can represent

ψlijω(x) = ψj(b
−12l(x− xli) − δξ(ω))

=
M
∑

m=1

ajm(δξ(ω))ϕm(b−12l(x− xli)) (20)

with suitable M ∈ N and polynomials ajm, ϕm (1 ≤ j ≤ κ, 1 ≤ m ≤ M),
from which (2) and (3) directly follow. So we have

(

P
(1)
l,ω

)

ω∈Ω
∈ Aran

nl
(W r

p (Q), Lq(Q)) with nl = κ|Il|. (21)

The following result generalizes Proposition 1 of [5] by combining the ap-
proach of Proposition 3.3 in [6] with that of Lemma 3.2 in [7]. It will be used
for variance reduction in Section 3.

Proposition 1. Let d ∈ N, r ∈ N0, 1 ≤ p, q ≤ ∞, let Q be a bounded

Lipschitz domain, and assume that (5) is satisfied with s = 0. Let (P
(1)
l,ω )ω∈Ω

for l ≥ l0 be given by (19), with parameters ρ ∈ N0, ρ ≥ r−1 and 0 ≤ δ < 1.
Moreover, if the embedding condition (6) does not hold, we assume δ > 0.
Then there is a constant c > 0 such that for all l ≥ l0 and f ∈ W r

p (Q) the
following hold.

If q <∞, then

(E ‖f − P
(1)
l,ω f‖

q
Lq(Q))

1/q ≤ c 2−rl+max(1/p−1/q,0)dl‖f‖W r
p (Q), (22)

and if q = ∞, then

ess supω∈Ω‖f − P
(1)
l,ω f‖L∞(Q) ≤ c 2−rl+dl/p‖f‖W r

p (Q). (23)

Proof. We put B = B0(0, 2a/b). By assumption, (5) holds for s = 0, so we
have

‖f‖Lq(B) ≤ c‖f‖W r
p (B) (f ∈ W r

p (B)). (24)

Assume q <∞. First we show that for f ∈ W r
p (B)

(

E ‖Pωf‖qLq(B)

)1/q

≤ c‖f‖W r
p (B). (25)

Indeed, by (8) we have
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(

E ‖Pωf‖qLq(B)

)1/q

≤



E

(

κ
∑

j=1

|f(yj + δξ(ω))|‖ψj( · − δξ(ω))‖Lq(B)

)q




1/q

≤ c

κ
∑

j=1

(E |f(yj + δξ(ω))|q)1/q. (26)

If δ > 0, it follows from (24) that

κ
∑

j=1

(E |f(yj + δξ(ω))|q)1/q =

κ
∑

j=1

(

δ−d
∫

[0,δ]d
|f(yj + z)|qdz

)1/q

≤ c‖f‖Lq(B) ≤ c‖f‖W r
p (B),

which together with (26) gives (25). If δ = 0, which, by assumption, is only
admitted if the embedding condition (6) holds, we have

κ
∑

j=1

(E |f(yj + δξ(ω))|q)1/q =

κ
∑

j=1

|f(yj)| ≤ κ‖f‖C(B̄) ≤ c‖f‖W r
p (B),

which combined with (26) again implies (25). Using Theorem 3.1.1 of [2], it
follows that there is a constant c > 0 such that for all f ∈ W r

p (B)

inf
g∈Pρ

‖f − g‖W r
p (B) ≤ c|f |r,p,B, (27)

where

|f |r,p,B =





∑

|α|=r

‖Dαf‖pLp(B)





1/p

if p <∞ and
|f |r,∞,B = max

|α|=r
‖Dαf‖L∞(B).

We get from (9), (24), (25), and (27)

(E ‖f − Pωf‖qLq(B))
1/q = inf

g∈Pρ

(

E ‖(f − g) − Pω(f − g)‖qLq(B)

)1/q

≤ c inf
g∈Pρ

‖f − g‖W r
p (B) ≤ c|f |r,p,B. (28)

Now let f ∈W r
p (Q) and let f̃ ∈W r

p (Rd) be an extension of f with

‖f̃‖W r
p (Rd) ≤ c‖f‖W r

p (Q)
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(see [19]). Then (10), (13), (16), and (17) imply

(E ‖f − P
(1)
l,ω f‖

q
Lq(Q))

1/q

=

(

E

∥

∥

∥

∑

i∈Il

χQ̃li∩Q
(f −RliPωElif)

∥

∥

∥

q

Lq(Q)

)1/q

=

(

∑

i∈Il

E ‖f −RliPωElif‖qLq(Q̃li∩Q)

)1/q

. (29)

Furthermore, from (15) and (28),

(

E ‖f −RliPωElif)‖q
Lq(Q̃li∩Q)

)1/q

≤
(

E ‖f̃ −RliPωElif̃‖qLq(B(xli,a2−l))

)1/q

= bd/q2−dl/q
(

E ‖Elif̃ − PωElif̃‖qLq(B)

)1/q

≤ c 2−dl/q|Elif̃ |r,p,B. (30)

Using Hölder’s inequality, we get for p <∞
(

2−dl
∑

i∈Il

|Elif̃ |qr,p,B

)1/q

≤ c 2max(1/p−1/q,0)dl

(

2−dl
∑

i∈Il

|Elif̃ |pr,p,B

)1/p

≤ c 2−rl+max(1/p−1/q,0)dl

(

∑

i∈Il

|f̃ |p
r,p,B(xli,a2−l)

)1/p

≤ c 2−rl+max(1/p−1/q,0)dl|f̃ |r,p,Rd

≤ c 2−rl+max(1/p−1/q,0)dl‖f‖W r
p (Q). (31)

The case p = ∞ follows in the same way with the respective changes. Joining
(29–31) proves (22). For q = ∞, relation (23) follows analogously, with the

usual modifications, replacing everywhere (E ‖ · ‖q)1/q by ess supω∈Ω‖ · ‖ etc.
⊓⊔



Stochastic Approximation of Functions and Applications 13

3 Integration over Lipschitz domains

Let Q be a bounded Lipschitz domain as in the previous section and let
I : W r

p (Q) → K be the integration operator

If =

∫

Q

f(x)dx.

Theorem 2. Let r ∈ N0, d ∈ N, 1 ≤ p ≤ ∞, p̄ = min(p, 2). Then there exist
constants c1−6 > 0 such that in the deterministic setting, if the embedding
condition (6) holds, then

c1n
−r/d ≤ edet

n (I,BW r
p (Q),K) ≤ c2n

−r/d,

and if the embedding condition does not hold, then

c3 ≤ edet
n (I,BW r

p (Q) ∩C(Q̄),K) ≤ c4.

In the randomized setting we have, independently of the embedding condition,

c5n
−r/d−1+1/p̄ ≤ erann (I,BW r

p (Q),K) ≤ c6n
−r/d−1+1/p̄.

In the deterministic case with the embedding condition the upper bound is
a direct consequence of [15], see also [21], Theorem 5.4. It also follows from
Proposition 1 by integrating the deterministic approximation for δ = 0 (see
(32) and (33) below, where this appears as part of the variance reduction).
The lower bound for general Lipschitz domains is easily derived from that for
the cube, which is well-known, see [14]. The lower bound in the deterministic
case without the embedding condition follows from the proof of Theorem 5.2
in [7] (the upper bound is trivial, it is just the boundedness of I).

Let us turn to the randomized case. For the cube, this result is due to
Novak for those r, d, p for which W r

p (Q) is embedded into L2(Q) (meaning
that p ≥ 2 or (p < 2 ∧ r/d ≥ 1/p−1/2)), see [14], 2.2.9. The remaining cases
were settled for the cube in [5]. As in the deterministic case, the lower bound
for general Lipschitz domains follows from the known one for the cube, see
[14] and [4]. The extension of the upper bound to general Lipschitz domains
is new and we give a proof here.

We start by introducing a randomized algorithm. Similar to [5], we use an
approximation for variance reduction by separation of the main part, which

we combine here with stratified sampling. We use P
(1)
l,ω1

for l ≥ l0, see relations
(11), (12), and (19) for its definition, with l0 the constant from Lemma 2.
For the purpose of the present proof we have changed the notation of the
underlying probability space to (Ω1, Σ1,P1). Again we assume δ > 0 if the
embedding condition (6) does not hold. For f ∈ F(Q) we have



14 Stefan Heinrich

IP
(1)
l,ω1

f =
∑

i∈Il

κ
∑

j=1

f(ylijω1 )

∫

Q̃li∩Q

ψlijω1 (x)dx

=
∑

i∈Il

κ
∑

j=1

αlijω1f(ylijω1 ) (32)

with

αlijω1 =

∫

Q̃li∩Q

ψlijω1 (x)dx =
∑

k∈Kli

∫

Qlk∩Q

ψlijω1 (x)dx. (33)

Observe that for δ > 0, this is a stochastic quadrature, with the only element
of randomness being ξ, while for δ = 0 it is deterministic (compare (11) and
(12)).

Now let ζk = ζk(ω2) (k ∈ Kl) be independent, uniformly distributed on
Qlk random variables over a complete probability space (Ω2, Σ2,P2). Define

a stratified sampling algorithm A
(2)
l,ω2

by setting for g ∈ F(Q) and ω2 ∈ Ω2

A
(2)
l,ω2

g = bd2−dl
∑

k∈Kl

χQlk∩Q(ζk(ω2))g(ζk(ω2)),

where we recall that |Qlk| = bd2−dl. It follows readily that (1–3) hold, so

(

A
(2)
l,ω2

)

ω2∈Ω2
∈ Aran

ml
(Lp(Q),K) with ml = |Kl|.

Moreover, for g ∈ L1(Q)

EA
(2)
l,ω2

g =
∑

k∈Kl

∫

Qlk

χQlk∩Q(x)g(x)dx =

∫

Q

g(x)dx.

First we show an error estimate for A
(2)
l,ω2

. The case p < 2 seems to be new.
Moreover, in the case p > 2 we estimate higher moments than the usual
second moment.

Lemma 3. Let 1 ≤ p ≤ ∞, p1 ≤ p, p1 < ∞. Then there is a constant c > 0
such that for l ≥ l0 and g ∈ Lp(Q)

(

E ω2 |Ig −A
(2)
l,ω2

g|p1
)1/p1

≤ c2−(1−1/p̄)dl‖g‖Lp(Q).

Proof. We can assume p̄ ≤ p1, the other cases follow from Hölder’s inequality.
Setting for k ∈ Kl

θk = bd2−dlχQlk∩Q(ζk)g(ζk),

we have
A

(2)
l,ω2

g − Ig =
∑

k∈Kl

(θk − E θk). (34)
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From Lemma 1, taking into account that K is of type 2, hence also of type
p̄, we get

(

E

∣

∣

∣

∑

k∈Kl

(θk − E θk)
∣

∣

∣

p1

)1/p1

≤ c

(

∑

k∈Kl

(

E |θk − E θk|p1
)p̄/p1

)1/p̄

≤ c|Kl|1/p̄−1/p1

(

∑

k∈Kl

E |θk − E θk|p1
)1/p1

. (35)

Furthermore,

(E |θk − E θk|p1)1/p1 ≤ 2(E |θk|p1)1/p1

= 2(bd2−dl)1−1/p1

(∫

Qlk∩Q

|g(x)|p1dx
)1/p1

. (36)

Combining (34–36) and using p1 ≤ p, we obtain

(

E |A(2)
l,ω2

g − Ig|p1
)1/p1

≤ c|Kl|1/p̄−1/p1(bd2−dl)1−1/p1

(

∫

Q

|g(x)|p1dx
)1/p1

≤ c2−(1−1/p̄)dl‖g‖Lp(Q).

⊓⊔

Now we put
(Ω,Σ,P) = (Ω1, Σ1,P1) × (Ω2, Σ2,P2)

and define the final algorithm (Al,ω)ω∈Ω for ω = (ω1, ω2) and f ∈ F(Q) by
setting

Al,ωf = IP
(1)
l,ω1

f +A
(2)
l,ω2

(f − P
(1)
l,ω1

f), (37)

thus, we separated the main part P
(1)
l,ω1

f , integrated it exactly and applied

stratified sampling to the remaining function f−P (1)
l,ω1

f . Writing this in more
detail, we obtain
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Al,ωf =
∑

i∈Il

κ
∑

j=1

αlijω1f(ylijω1)

+ bd2−dl
∑

k∈Kl

χQlk∩Q (ζk)
(

f(ζk) − (P
(1)
l,ω1

f)(ζk)
)

.

We have

(P
(1)
l,ω1

f)(ζk) =
∑

i1∈Il

∑

k1∈Kli1

κ
∑

j=1

f(yli1jω1)χQlk1
∩Q(ζk)ψli1jω1(ζk)

=

κ
∑

j=1

f(ylι(k)jω1
)χQlk∩Q(ζk)ψlι(k)jω1

(ζk)

for almost all ω1 ∈ Ω1, where ι(k) is the unique i ∈ Il with k ∈ Kli. Conse-
quently,

Al,ωf =
∑

i∈Il

∑

k∈Kli

(

κ
∑

j=1

f(ylijω1 )

∫

Qlk∩Q

ψlijω1 (x)dx

+ bd2−dlχQlk∩Q(ζk)
(

f(ζk) −
κ
∑

j=1

f(ylijω1 )ψlijω1 (ζk)
)

)

,

with the ylijω1 and ψlijω1 given by (11) and (12) and equality holding P-
almost surely. We have

(

Al,ω
)

ω∈Ω
∈ Aran

nl
(W r

p (Q),K) with nl = κ|Il| + |Kl| ≤ c2dl, (38)

which can be checked in a similar way as (21), using (20).

Proposition 2. Let 1 ≤ p ≤ ∞, p1 ≤ p, p1 < ∞. Then there is a constant
c > 0 such that for l ≥ l0 and f ∈Wp(Q)

(E |If −Al,ωf |p1)1/p1 ≤ c2−rl−(1−1/p̄)dl‖f‖W r
p (Q).

Proof. We have

If −Al,ωf = I(f − P
(1)
l,ω1

f) −A
(2)
l,ω2

(f − P
(1)
l,ω1

f).

Using Fubini’s theorem, Lemma 3, and Proposition 1 for q = p, we get for
p <∞
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(E |If −Al,ωf |p1)1/p1

=
(

E ω1E ω2

∣

∣

∣I
(

f − P
(1)
l,ω1

f
)

−A
(2)
l,ω2

(

f − P
(1)
l,ω1

f
)∣

∣

∣

p1)1/p1

≤ c2−(1−1/p̄)dl

(

E ω1

∥

∥

∥f − P
(1)
l,ω1

f
∥

∥

∥

p1

Lp(Q)

)1/p1

≤ c2−(1−1/p̄)dl

(

E ω1

∥

∥

∥f − P
(1)
l,ω1

f
∥

∥

∥

p

Lp(Q)

)1/p

(39)

≤ c2−(1−1/p̄)dl−rl‖f‖W r
p (Q).

This also holds for p = ∞, if we replace in (39)

(

E ω1

∥

∥

∥f − P
(1)
l,ω1

f
∥

∥

∥

p

Lp(Q)

)1/p

by ess supω1∈Ω1
‖f − P

(1)
l,ω1

f‖L∞(Q), concluding the proof.
⊓⊔

Now the upper bound in the randomized case of Theorem 2 is a direct
consequence of Proposition 2 and (38).

4 Approximation of embeddings into spaces with
negative degree of smoothness

Let r, s ∈ N0, 1 ≤ p, q ≤ ∞. Let q∗ be the dual index to q, given by 1/q +
1/q∗ = 1. Denote by W̃ s

q∗(Q) the closure in the norm of W s
q∗(Q) of the set of

C∞ functions whose support is contained in Q and let U : W̃ s
q∗(Q) →W s

q∗(Q)
be the identical embedding. We consider two embedding operators

J : W r
p (Q) →W s

q∗(Q)∗

given for f ∈W r
p (Q) by

(Jf)(g) =

∫

Q

f(x)g(x)dx (g ∈W s
q∗(Q))

and

J̃ = U∗J : W r
p (Q)

J−→ W s
q∗(Q)∗

U∗

−−→ W̃ s
q∗(Q)∗. (40)

We note that by definition, see [1], section 3.11, for 1 < q ≤ ∞ and s > 0

W̃ s
q∗(Q)∗ = W−s

q (Q). (41)

Let us formulate conditions, under which J (and hence J̃) is well-defined and
continuous. First let us state two auxiliary conditions.

r = 0, p = 1, 1 < q <∞, (42)
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s = 0, q = ∞, 1 < p <∞. (43)

Now J : W r
p (Q) →W s

q∗(Q)∗ is well-defined and continuous if

(42) holds and s
d >

1
q∗ ,

or
(43) holds and r

d >
1
p ,

or

(42) and (43) do not hold, and r+s
d ≥

(

1
p − 1

q

)

+
.



























(44)

This this follows from the Sobolev embedding theorem (5), see also [7], Section
4.

Next we want to give some motivation why to consider spaces with negative
degree of smoothness W−s

q (Q). The space W−s
2 (Q) plays a central role in the

theory of elliptic partial differential equations, in connection with the weak
form. Let m ∈ N and consider the bilinear form a on W̃m

2 (Q), defined by

a(u, v) =
∑

α|,|β|≤m

∫

Q

aαβ(x)D
αu(x)Dβv(x)dx (u, v ∈ W̃m

2 (Q)),

where aαβ ∈ C(Q̄). We assume that a is W̃m
2 (Q)-elliptic, meaning that

|a(u, v)| ≤ c1‖u‖Wm
2 (Q)‖v‖Wm

2 (Q)

a(u, u) ≥ c2‖u‖2
Wm

2 (Q)

for u, v ∈ W̃m
2 (Q). The weak elliptic problem associated with a is the follow-

ing. Given f ∈W−m
2 (Q), find u ∈ W̃m

2 (Q) such that for all v ∈ W̃m
2 (Q)

a(u, v) = f(v). (45)

By ellipticity, the problem has a unique solution S0f ∈ W̃m
2 (Q), and

S0 : W−m
2 (Q) → W̃m

2 (Q)

is an isomorphism. For r ∈ N0 we seek to solve the weak problem for f ∈
W r

2 (Q). The solution operator, that is, the operator, which maps the problem
instance f ∈W r

2 (Q) to the solution u of (45) is

Sell = S0J̃ : W r
2 (Q)

J̃−→W−m
2 (Q)

S0−→ W̃m
2 (Q). (46)

Since S0 is an isomorphism, we immediately derive from (46) the connec-
tion to approximation of J̃ :

Corollary 1. Let m ∈ N. Then there are constants c1−4 > 0 such that
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c1e
det
n (J̃ ,BW r

2 (Q),W
−m
2 (Q)) ≤ edet

n (Sell,BW r
2 (Q), W̃

m
2 (Q))

≤ c2e
det
n (J̃ ,BW r

2 (Q),W
−m
2 (Q))

and

c3e
ran
n (J̃ ,BW r

2 (Q),W
−m
2 (Q)) ≤ erann (Sell,BW r

2 (Q), W̃
m
2 (Q))

≤ c4e
ran
n (J̃ ,BW r

2 (Q),W
−m
2 (Q)).

We also consider approximation in the more general space W s
q∗(Q)∗, because

by (40) upper bounds are stronger, while the lower bound methods from [7]
work equally for both cases W̃ s

q∗(Q)∗ and W s
q∗(Q)∗.

Moreover, let us also point out an interesting connection to a problem
of weighted integration, not with a fixed weight, but simultaneous integra-
tion over Sobolev classes of weights. We discuss this only briefly, leaving the
detailed exploration open to future research.

First we consider the deterministic case. Let A ∈ Adet
n (W r

p (Q),W s
q∗(Q)∗),

Af =

n
∑

i=1

f(xi)ψi,

with xi ∈ Q and ψi ∈ W s
q∗(Q)∗ (i = 1, . . . , n). We have

e(J,A,BW r
p (Q),W

s
q∗(Q)∗)

= sup
f∈BWr

p (Q)

‖Jf −Af‖W s
q∗

(Q)∗

= sup
f∈BWr

p (Q)

∥

∥

∥Jf −
n
∑

i=1

f(xi)ψi

∥

∥

∥

W s
q∗

(Q)∗

= sup
f∈BWr

p (Q)

sup
w∈BWs

q∗
(Q)

∣

∣

∣

∣

∣

∫

Q

f(x)w(x)dx −
n
∑

i=1

f(xi)(ψi, w)

∣

∣

∣

∣

∣

.

This way we approximate the weighted integral
∫

Q
f(x)w(x)dx by a quadra-

ture
∑n
i=1 (ψi, w)f(xi). The quadrature weights depend on the integration

weight w only through n linear functionals, and the error is taken uniformly
over the integrands f and weights w.

In the randomized case we let A ∈ Aran
n (W r

p (Q),W s
q∗(Q)∗),

A = ((Ω,Σ,P), (Aω)ω∈Ω),

Aωf =

n
∑

i=1

f(xi,ω)ψi,ω (ω ∈ Ω),

with xi,ω ∈ Q and ψi,ω ∈ W s
q∗(Q)∗ (i = 1, . . . , n, ω ∈ Ω). Then we have
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e(J,A,BW r
p (Q),W

s
q∗(Q)∗)

= sup
f∈BWr

p (Q)

E ‖Jf −Aωf‖W s
q∗

(Q)∗

= sup
f∈BWr

p (Q)

E

∥

∥

∥
Jf −

n
∑

i=1

f(xi,ω)ψi,ω

∥

∥

∥

W s
q∗

(Q)∗

= sup
f∈BWr

p (Q)

E sup
w∈BWs

q∗
(Q)

∣

∣

∣

∣

∣

∫

Q

f(x)w(x)dx −
n
∑

i=1

f(xi,ω)(ψi,ω , w)

∣

∣

∣

∣

∣

.

Thus, similar to the deterministic case, we approximate
∫

Q
f(x)w(x)dx by a

quadrature, this time a stochastic one, and the quadrature weights depend on
the integration weight w through n random linear functionals. Moreover, ob-
serve that the error criterion is different from the usual one in the randomized
setting, namely, it is uniform over the class of weights.

After these motivations let us state the main results on approximation. In
the deterministic case, we have the following.

Theorem 3. Let r, s ∈ N0, 1 ≤ p, q ≤ ∞ and assume that (44) holds. Then
there are constants c1−4 > 0 such that for all n ∈ N with n ≥ 2, if the
embedding condition (6) holds, then

c1n
−γ1 ≤ edet

n (J̃ ,BW r
p (Q), W̃

s
q∗(Q)∗)

≤ edet
n (J,BW r

p (Q),W
s
q∗(Q)∗) ≤ c2n

−γ1(logn)ν1 ,

where

γ1 = min

(

r + s

d
−
(

1

p
− 1

q

)

+

,
r

d

)

, (47)

ν1 =







1 if
s

d
=

1

q∗
, p = 1, 1 < q <∞,

0 otherwise,

(48)

and if the embedding condition (6) does not hold, we have

c3 ≤ edet
n (J̃ ,BW r

p (Q) ∩C(Q̄), W̃ s
q∗(Q)∗)

≤ edet
n (J,BW r

p (Q) ∩ C(Q̄),W s
q∗(Q)∗) ≤ c4.

The case of the embedding condition is essentially due to Vyb́ıral [22],
based on results of Novak and Triebel [15], with the exception of the case
s/d = 1/p − 1/q with 1 ≤ p < q ≤ ∞, which was shown in [7]. The result
of Theorem 3, for the case that the embedding condition does not hold, was
proved in [7].

To state the next result put p̄ = min(p, 2),
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θ =
s

d
−
(

1

p
− 1

q

)

+

, τ = 1 − 1

p̄
,

ν′2 =



















































0 if θ > τ

1 if θ = τ and p ≤ q <∞
2 − 1/p̄ if θ = τ and p < q = ∞
2 if θ = τ and p = q = ∞
1 if θ = τ and p > q

0 if θ < τ and min(p, q) <∞
θ if θ < τ and p = q = ∞.

(49)

The main approximation result in the randomized case is

Theorem 4. Let r, s ∈ N0, 1 ≤ p, q ≤ ∞ and assume that (44) holds. Then
there are constants c1, c2 > 0 such that for all n ∈ N with n ≥ 2

c1n
−γ2 ≤ erann (J̃ ,BW r

p (Q), W̃
s
q∗(Q)∗)

≤ erann (J,BW r
p (Q),W

s
q∗(Q)∗) ≤ c2n

−γ2(log n)ν2 ,

where

γ2 = min

(

r + s

d
−
(

1

p
− 1

q

)

+

,
r

d
+ 1 − 1

p̄

)

, (50)

ν2 =

{

ν′2 if γ2 > 0,

0 if γ2 = 0,
(51)

and ν′2 is given by (49).

This result is proved in [7]. Together with the randomized case of Theorem 1
it solved a problem posed by Novak and Woźniakowski, see [16], section 4.3.3,
Problem 25. Even the case p = q = 2, Q = (0, 1) of Theorem 4 was new. The
algorithm realizing the optimal rate is discussed in the next section.

For the weak elliptic problem we conclude (see also [7], Corollary 7.1 for
a slightly more general statement)

Corollary 2. Let r ∈ N0, m ∈ N. Then there are constants c1−6 > 0 such
that for all n ∈ N with n ≥ 2, if the embedding condition (6) holds,

c1n
− r

d ≤ edet
n (Sell,BW r

2 (Q), W̃
m
2 (Q)) ≤ c2n

− r
d ,

if the embedding condition (6) does not hold,

c3 ≤ edet
n (Sell,BW r

2 (Q), W̃
m
2 (Q)) ≤ c4,
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and, independently of the embedding condition,

c5n
− r

d
−min(m

d
, 12 ) ≤ erann (Sell,BW r

2 (Q), W̃
m
2 (Q)) ≤ c6n

− r
d
−min(m

d
, 12 )(log n)ν3

with

ν3 =

{

1 if m
d = 1

2 ,

0 otherwise.

For the problem of integration with variable weights we obtain

Corollary 3. Let r, s ∈ N0, 1 ≤ p, q ≤ ∞ and assume that (44) and the
embedding condition (6) hold. Then there are constants c1, c2 > 0 such that
for all n ∈ N with n ≥ 2

c1n
−γ1

≤ inf
(xi,ψi)

sup
f∈BWr

p (Q), w∈BWs
q∗

(Q)

∣

∣

∣

∣

∣

∫

Q

f(x)w(x)dx −
n
∑

i=1

f(xi)(ψi, w)

∣

∣

∣

∣

∣

≤ c2n
−γ1(log n)ν1 ,

where γ1 and ν1 are given by (47) and (48), and the infimum is taken over
all families (xi)1≤i≤n ⊂ Q, (ψi)1≤i≤n ⊂W s

q∗(Q)∗.

Corollary 4. Let r, s ∈ N0, 1 ≤ p, q ≤ ∞ and assume that (44) holds. Then
there are constants c1, c2 > 0 such that for all n ∈ N with n ≥ 2

c1n
−γ2

≤ inf
(xi,ω,ψi,ω)

sup
f∈BWr

p (Q)

E sup
w∈BWs

q∗
(Q)

∣

∣

∣

∣

∣

∫

Q

f(x)w(x)dx −
n
∑

i=1

f(xi,ω)(ψi,ω , w)

∣

∣

∣

∣

∣

≤ c2n
−γ2(log n)ν2 ,

where γ2 and ν2 are given by (50) and (51), and the infimum is taken over
all families (xi,ω)1≤i≤n, ω∈Ω ⊂ Q and (ψi,ω)1≤i≤n, ω∈Ω ⊂W s

q∗(Q)∗ satisfying
conditions (1–3).

Given 1 ≤ p ≤ ∞ and r ∈ N0, let us put q = p and choose any s ∈ N

satisfying
s

d
> 1 − 1

p̄
,

hence (44) holds, γ1 = r
d , ν1 = 0, γ2 = r

d and ν2 = 0. Now setting w(x) ≡ 1,
we recover from Corollaries 3 and 4 the upper bounds of Theorem 2. However,
the resulting algorithm (see the next section) is more complicated than the
one presented in Section 3.
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5 Approximation of J : W r

p
(Q) → W s

q∗
(Q)∗ — the

algorithm

In this section we want to explain some ideas of the construction of the
algorithm from [7] which gives the upper bound in Theorem 4. If (44) holds,
then, as shown in [7], proof of Proposition 4.1, we can find a number 1 ≤ u ≤
∞ such that both embeddings

J1 : W r
p (Q) → Lu(Q)

and
J2,0 : W s

q∗(Q) → Lu∗(Q)

are continuous. Let
Vu : Lq(Q) → Lq∗(Q)∗

be the embedding given by

(Vuf, g) = (f, g) (f ∈ Lq(Q), g ∈ Lq∗(Q)), (52)

which, in fact, is just the identity operator on Lq(Q) for 1 < q ≤ ∞ and the
canonical embedding of L1(Q) into L∞(Q)∗ = L1(Q)∗∗ for q = 1. Hence with

J2 = J∗
2,0Vu : Lu(Q) →W s

q∗(Q)∗, (53)

the embedding J can be factorized as

J : W r
p (Q)

J1−→ Lu(Q)
J2−→W s

q∗(Q)∗.

For the approximation of J1 we use the algorithm from Proposition 1, see
below. The key part of the approximation of J is that of J2. We use the
duality (53). Let us note the following to explain the next steps. We want
to approximate J∗

2,0Vq by operators based on function values. We know how
to do this for J2,0 (Proposition 1), but this does not help for the dual J∗

2,0,
because then the delta functionals would appear at the wrong end. Moreover,
we need deterministic error estimates to pass them to the dual. Thus, we start
with a deterministic linear approximation of J2,0.

Let ϕj (j = 1, . . . , κ) be any orthonormal in L2([0, 1]d) basis of the space
Pρ of polynomials of degree at most ρ and let P : L1([0, 1]d) → Pρ be defined
by

Pg =
κ
∑

j=1

(g, ϕj)ϕj (g ∈ L1([0, 1]d)).

For l ≥ l0, with l0 the constant from Lemma 2, we define, similarly to (18),
an operator Pl : W s

q∗(Q) → Lu∗(Q) by setting for g ∈ W s
q∗(Q)
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Plg =
∑

i∈Il

χQ̃li∩Q
RliPElig

= b−d2dl
∑

i∈Il

∑

k∈Kli

κ
∑

j=1

(g, χQli
Rliϕj)χQlk∩QRliϕj .

Then the dual operator

P ∗
l f = b−d2dl

∑

i∈Il

∑

k∈Kli

κ
∑

j=1

(f, χQlk∩QRliϕj)χQli
Rliϕj

approximates J∗
2,0. The next idea would be to use simultaneous Monte Carlo

integration for the approximation of the weighted integrals (f, χQlk∩QRliϕj).
This, however, does not give the optimal rate. So we resort to a multilevel
splitting. We fix L ∈ N0, L ≥ l0, and write PL as

PL =

L
∑

l=l0

(Pl − Pl−1), Pl0−1 := 0.

We can represent (see [7], proof of the first part of Lemma 3.3, for details)

(Pl − Pl−1)g =
∑

k∈Kl

κ
∑

j=1

(g, hlkj)χQlk∩QRlkϕj , (54)

where the hlkj are defined in the following way. For l ≥ l0 and k ∈ Kl let ι(l, k)

be the unique index i ∈ Il with Qlk ⊂ Q̃li, see (13–17) for the definitions.
Let αlkjm be given by

χQlk
Rl,ι(l,k)ϕj =

κ
∑

m=1

αlkjmχQlk
Rlkϕm,

which is a correct definition since (Rlkϕj)
κ
j=1 is a basis of the polynomials

Pρ(Qlk) on Qlk. For the case l = l0 we set for k ∈ Kl0 , m = 1, . . . , κ

hl0km = b−d2dl0χQl0,ι(l0,k)
Rl0,ι(l0,k)

κ
∑

j=1

αl0kjmϕj .

Furthermore, for l ≥ l0 +1 and k ∈ Kl let υ(l, k) be the unique i ∈ Il−1 with
Qlk ⊂ Q̃l−1,i. Let βlkjm ∈ K be such that

χQlk
Rl−1,υ(l,k)ϕj =

κ
∑

m=1

βlkjmχQlk
Rlkϕm.

We put for l ≥ l0 + 1, k ∈ Kl, m = 1, . . . , κ
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hlkm = b−d2dlχQl,ι(l,k)
Rl,ι(l,k)

κ
∑

j=1

αlkjmϕj

−b−d2d(l−1)χQl−1,υ(l,k)
Rl−1,υ(l,k)

κ
∑

j=1

βlkjmϕj .

Passing to the dual, we get from (54)

(Pl − Pl−1)
∗f =

∑

k∈Kl

κ
∑

j=1

(f, χQlk∩QRlkϕj)hlkj . (55)

Now fix any numbers Nl ∈ N (l = l0, . . . , L) and let (ξli)
L,Nl

l=l0,i=1 be inde-

pendent uniformly distributed on [0, 1]d random variables on some complete
probability space (Ω2, Σ2,P2). Put

ξlki = xlk + b2−lξli,

where we recall that xlk is the point in Qlk with minimal coordinates, so
(ξlki)

Nl

i=1 are independent, uniformly distributed on Qlk random variables.
We approximate the scalar products in (55) by the standard Monte Carlo
method

(f, χQlk∩QRlkϕj)

≈ N−1
l |Qlk|

Nl
∑

i=1

f̃(ξlki) (Rlkϕj)(ξlki)

= N−1
l bd2−dl

Nl
∑

i=1

f̃(xlk + b2−lξli)ϕj(ξli).

Here f̃ is defined by

f̃(x) =

{

f(x) if x ∈ Q
0 if x ∈ Ql \Q, (56)

where
Ql =

⋃

k∈Kl

Qlk.

This leads to the following approximations. For f ∈ Lu(Q), ω2 ∈ Ω2,

(Pl − Pl−1)
∗f ≈ A

(2)
l,ω2

f

= bd2−dlN−1
l

∑

k∈Kl

κ
∑

j=1

Nl
∑

i=1

f̃
(

xlk + b2−lξli(ω2)
)

ϕj
(

ξli(ω2)
)

hlkj , (57)
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and, summing over the levels,

J2f ≈ P ∗
Lf

≈ A(2)
ω2
f = bd

L
∑

l=l0

2−dlN−1
l

∑

k∈Kl

κ
∑

j=1

Nl
∑

i=1

f̃(xlk + b2−lξli)ϕj(ξli)hlkj .

We are ready to define the final algorithm (Aω0)ω0∈Ω0 for the approxi-

mation of J : W r
p (Q) → W s

q∗(Q)∗. For L1 ∈ N0, L1 ≥ l0 let
(

P
(1)
L1,ω1

)

ω1∈Ω1

be the algorithm defined in (19) with (Ω1, Σ1,P1) the associated probability
space. We put

(Ω0, Σ0,P0) = (Ω1, Σ1,P1) × (Ω2, Σ2,P2)

and use P
(1)
L1,ω1

for the approximation of J1 – which is a way of variance
reduction similar to that in the integration algorithm (37) in Section 3. Then

A
(2)
ω2 is applied to the difference f − P

(1)
L1,ω1

f . Hence we set for ω0 = (ω1, ω2)
and f ∈ W r

p (Q)

Aω0f = P
(1)
L1,ω1

f +A(2)
ω2

(f − P
(1)
L1,ω1

f).

We refer to [7] for the appropriate choice of the parameters and the error
analysis giving the upper estimate of Theorem 4.

6 Indefinite integration and approximation in spaces of
functions with dominating mixed derivatives

This chapter is based on [8], where indefinite integration was studied. Here,
however, we mainly explore the connection to approximation in certain
Sobolev spaces of functions with dominating mixed derivatives, which has
not been considered in [8].

In this section we put
Q = [0, 1]d.

Let 1 ≤ p ≤ ∞, 1̄ = (1, 1, . . . , 1) ∈ Nd, and define

Ŵ 1̄
p (Q) =

{

f ∈ F(Q) : ∃ g ∈ Lp(Q), f(x) =

∫

[x,1̄]

g(t)dt (x ∈ Q)
}

,

where for x = (x1, . . . , , xd) we put [x, 1̄] = [x1, 1] × ... × [xd, 1]. The space
Ŵ 1̄
p (Q) is equipped with the norm

‖f‖Ŵ 1̄
p (Q) = ‖D1̄f‖Lp(Q) = ‖g‖Lp(Q).
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So Ŵ 1̄
p (Q) is a space of functions with dominating mixed smoothness and

boundary conditions (these functions vanish for all x ∈ Q with at least one
coordinate equal to 1). Let W̃ 1̄

p (Q) be the closure in Ŵ 1̄
p (Q) of the set of

infinitely differentiable functions with support in the interior of Q. Let

Up : W̃ 1̄
p (Q) → Ŵ 1̄

p (Q)

be the identical embedding. We define for 1 < p ≤ ∞

W−1̄
p (Q) = W̃ 1̄

p∗(Q)∗.

Similarly to Section 4, our goal is to study stochastic approximation of

J : Lp(Q) → Ŵ 1̄
q∗(Q)∗

and
J̃ = U∗

q∗J : Lp(Q) → W̃ 1̄
q∗(Q)∗ (58)

for 1 ≤ p, q ≤ ∞, where J is defined by

(Jf)(g) =

∫

Q

f(x)g(x)dx
(

f ∈ Lp(Q), g ∈ Ŵ 1̄
q∗(Q)

)

. (59)

It is easily verified that J and J̃ are continuous injections. We shall relate the
embedding J to indefinite integration, investigated in [8]. For this purpose
we introduce the operator S : Lp(Q) → Lq(Q) of indefinite integration by
setting for f ∈ Lp(Q) and x = (x1, . . . , xd) ∈ Q

(Sf)(x) =

∫

[0,x]

f(t)dt =

∫ x1

0

. . .

∫ xd

0

f(t1, . . . , td)dt.

Clearly, S is continuous for all 1 ≤ p, q ≤ ∞. To establish the connection to
J we also introduce a related operator S0 : Lp(Q) → Lq(Q) by

(S0f)(x) =

∫

[x,1̄]

f(t)dt.

For f, g ∈ L1(Q) we have

(Sf, g) = (f, S0g). (60)

Furthermore, the operator S0 is an isometric isomorphism from Lq∗(Q) to

Ŵ 1̄
q∗(Q) (meaning that S0 maps Lq∗(Q) onto Ŵ 1̄

q∗(Q) with preservation of
the norm). Hence, the dual operator

S∗
0 : Ŵ 1̄

q∗(Q)∗ → Lq∗(Q)∗
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and its inverse
(S∗

0 )−1 : Lq∗(Q)∗ → Ŵ 1̄
q∗(Q)∗

are isometric isomorphisms, as well. Next we show that J can be represented
as

J : Lp(Q)
S−→ Lq(Q)

Vq−→ Lq∗(Q)∗
(S∗

0 )−1

−−−−→ Ŵ 1̄
q∗(Q)∗, (61)

where Vq is the canonical embedding, see (52). Indeed, let f ∈ Lp(Q) , g ∈
Ŵ 1̄
q∗(Q). Then, using (60) and (52),

((S∗
0 )−1VqSf, g) = (VqSf, S

−1
0 g) = (Sf, S−1

0 g) = (f, g),

from which (61) follows. Since (S∗
0 )−1 is an isometric isomorphism and, for

1 < q ≤ ∞, Vq is the identity of Lq(Q), we conclude in this case

erann (J, BLp(Q), Ŵ
1̄
q∗(Q)∗) = erann (S,BLp(Q), Lq(Q)). (62)

This relation also holds for q = 1, because then V1 is an isometric embedding
of L1(Q) into L1(Q)∗∗ such that the range V1(L1(Q)) admits a projection of
norm 1 from L1(Q)∗∗, see, e.g., [11], §17, Th. 3 (in combination with §3, Th.
7 and §15, Th. 3). Taking into account (58) and ‖Uq‖ = 1, it follows from
(62) that

erann (J̃ , BLp(Q), W̃
1̄
q∗(Q)∗) ≤ erann (J, BLp(Q), Ŵ

1̄
q∗(Q)∗). (63)

The respective counterparts of (62) and (63) for the deterministic minimal
error edet

n also hold. We are ready to apply the following result from [8].

Theorem 5. Let d ∈ N, 1 ≤ p ≤ ∞ and p̄ = min(p, 2). Then there are
constants c1, c2 > 0 such that

c1n
−1+1/p̄ ≤ erann (S,BLp(Q), L∞(Q)) ≤ c2n

−1+1/p̄.

Using this theorem, we can derive the respective results for the embedding
operators J and J̃ as well as an easy generalization of Theorem 5 itself.

Corollary 5. Let d ∈ N, 1 ≤ p, q ≤ ∞ and p̄ = min(p, 2). Then there are
constants c1−4 > 0 such that

c1n
−1+1/p̄ ≤ erann (S,BLp(Q), Lq(Q)) ≤ c2n

−1+1/p̄ (64)

c3n
−1+1/p̄ ≤ erann (J̃ ,BLp(Q), W̃

1̄
q∗(Q)∗)

≤ erann (J,BLp(Q), Ŵ
1̄
q∗(Q)∗) ≤ c4n

−1+1/p̄. (65)

Proof. The upper bound in (64) follows from Theorem 5 and the continuity of
the embedding L∞(Q) → Lq(Q). The upper bound of (65) is a consequence
of (62), (63), and the upper bound of (64).
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The lower bound of (65) is shown by a reduction to integration. Let ψ
be a C∞-function with support in Q satisfying ψ ≥ 0 and ψ 6≡ 0. Define
S1 : Lp(Q) → K as

S1f =

∫

Q

f(x)ψ(x)dx (f ∈ Lp(Q)).

By (59),
(J̃f, ψ) = S1f,

thus
erann (S1,BLp(Q),K) ≤ ‖ψ‖W̃ 1̄

q∗
(Q) e

ran
n (J̃ ,BLp(Q), W̃

1̄
q∗(Q)∗),

while it is well-known that

erann (S1,BLp(Q),K) ≥ cn−1+1/p̄,

see [14]. Finally, the lower bound of (64) follows from (62), (63), and the
lower bound of (65). ⊓⊔

Let us mention that in the deterministic case there is no convergence to
zero of the minimal error. This is easily shown by reduction to integration,
in the same way as in the proof of Corollary 5. Thus, we have

Corollary 6. Let d ∈ N, 1 ≤ p, q ≤ ∞. Then there are constants c1−4 > 0
such that

c1 ≤ edet
n (S,BLp(Q), Lq(Q)) ≤ c2

c3 ≤ edet
n (J̃ ,BLp(Q), W̃

1̄
q∗(Q)∗) ≤ edet

n (J,BLp(Q), Ŵ
1̄
q∗(Q)∗) ≤ c4.

So far the constants in the estimates could depend in an arbitrary way on
the dimension. Now we take a closer look at the upper bounds with the goal of
establishing polynomial dependence of the constants on the dimension, hence
tractability, see [16, 17] for this notion and the theory thereof. We restrict
our considerations to the case q = ∞, since in this case the problems S and
J are normalized, meaning that

‖S : Lp(Q) → L∞(Q)‖ = ‖J : Lp(Q) → Ŵ 1̄
1 (Q)∗‖

= ‖J̃ : Lp(Q) →W−1̄
∞ (Q)‖ = 1,

so tractability with respect to the absolute and relative error criterion (see
[16, 17]) coincide.

Most tractability results were established for weighted problems, that
is, with a decreasing dependence on subsequent dimensions. Here we show
tractability for certain unweighted embedding operators. We again use the
connection to indefinite integration (62) and a respective result from [8]. For
this sake we introduce the simple sampling algorithm. Let (ξi)

n
i=1 be indepen-
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dent, uniformly distributed on Q random variables on a complete probability
space (Ω,Σ,P). We approximate the indefinite integration operator S by

(Sf)(x) =

∫

Q

χ[0,x](t)f(t)dt

≈ (An,ωf)(x) =
1

n

n
∑

i=1

χ[0,x](ξi(ω)) f(ξi(ω)) (x ∈ Q,ω ∈ Ω),

thus

Sf ≈ An,ωf =
1

n

n
∑

i=1

f(ξi)χ[ξi,1̄].

We note that this algorithm satisfies consistency (1), but does not possess
the measurability properties (2) and (3). However, for each f ∈ Lp(Q) the
mapping

ω ∈ Ω → ‖Sf −An,ωf‖L∞(Q)

is Σ-measurable, see [8] for these facts and also for another algorithm with
the same approximation properties, but fulfilling (1–3).

The following was shown in [8]. A proof of a generalization of (66) is given
in Section 7.

Theorem 6. Let 1 ≤ p ≤ ∞, 1 ≤ p1 < ∞, p1 ≤ p, and p̄ = min(p, 2). Then
there is a constant c > 0 such that for all d, n ∈ N, Q = [0, 1]d, f ∈ Lp(Q),

(

E ‖Sf −An,ωf‖p1L∞(Q)

)1/p1
≤ cd1−1/p̄n−1+1/p̄‖f‖Lp(Q), (66)

and moreover,

erann (S,BLp(Q), L∞(Q)) ≤ cd1−1/p̄n−1+1/p̄. (67)

Let us define a related algorithm on Lp(Q) with values in Ŵ 1̄
1 (Q)∗ by

setting for f ∈ Lp(Q) and ω ∈ Ω

A(1)
n,ωf =

n
∑

i=1

f(ξi(ω))δξi(ω)

with the ξi as above and δx ∈ Ŵ 1̄
1 (Q)∗ given for x ∈ Q by

(g, δx) = g(x) (g ∈ Ŵ 1̄
1 (Q)).

A corresponding algorithm Ã
(1)
n,ω with values in W̃ 1̄

1 (Q)∗ = W−1̄
∞ (Q) is defined

by

Ã(1)
n,ωf = U∗

1A
(1)
n,ωf =

n
∑

i=1

f(ξi(ω))δ̃ξi(ω), (68)
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with δ̃x standing for δx, interpreted as a functional on the subspace W̃ 1̄
1 (Q).

We use Theorem 6 to derive the following error estimates for the algorithms

A
(1)
n and Ã

(1)
n .

Proposition 3. Let 1 ≤ p ≤ ∞, 1 ≤ p1 < ∞, p1 ≤ p, and p̄ = min(p, 2).
Then there is a constant c > 0 such that for all d, n ∈ N, Q = [0, 1]d,
f ∈ Lp(Q),

E

(

‖J̃f − Ã(1)
n,ωf‖p1W−1̄

∞ (Q)

)1/p1
≤ E

(

‖Jf −A(1)
n,ωf‖p1Ŵ 1̄

1 (Q)∗

)1/p1
(69)

≤ cd1−1/p̄n−1+1/p̄‖f‖Lp(Q), (70)

and moreover,

erann (J̃ ,BLp(Q),W
−1̄
∞ (Q)) ≤ erann (J,BLp(Q), Ŵ

1̄
1 (Q)∗)

≤ cd1−1/p̄n−1+1/p̄. (71)

Proof. Inequality (69) follows from (58) and (68). To show (70), we first note
that for g ∈ Ŵ 1̄

q∗(Q) and x ∈ Q we have

(g, (S∗
0 )−1χ[x,1̄]) = (S−1

0 g, χ[x,1̄]) = (S0(S
−1
0 g))(x)

= g(x) = (g, δx),

thus
(S∗

0 )−1χ[x,1̄] = δx. (72)

Consequently, using (61) (noting that V∞ is the identity of L∞(Q)), (72),
and (66) of Theorem 6, we get for f ∈ Lp(Q)

E

(

∥

∥Jf −A(1)
n,ωf

∥

∥

p1

Ŵ 1̄
1 (Q)∗

)1/p1

= E

(

∥

∥

∥Jf −
n
∑

i=1

f(ξi)δξi

∥

∥

∥

p1

Ŵ 1̄
1 (Q)∗

)1/p1

= E

(

∥

∥

∥(S∗
0 )−1Sf −

n
∑

i=1

f(ξi) (S∗
0 )−1χ[ξi,1̄]

∥

∥

∥

p1

Ŵ 1̄
1 (Q)∗

)1/p1

= E

(

∥

∥

∥Sf −
n
∑

i=1

f(ξi)χ[ξi,1̄]

∥

∥

∥

p1

L∞(Q)

)1/p1

= E

(

∥

∥Sf −An,ωf
∥

∥

p1

L∞(Q)

)1/p1
≤ cd1−1/p̄n−1+1/p̄.

Finally, (71) follows from (67), (62), and (63). ⊓⊔
The results in this section are very specific, leaving much room for further
investigations, e.g., of smoothness different from 1̄, of other source spaces than
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Lp(Q), and of more general domainsQ. In the latter direction a generalization
of the first part of Theorem 6 is given in the next section.

7 A generalization of indefinite integration and
tractability of discrepancy

Let (G,G) be a measurable space, that is, G is a nonempty set and G a
σ-algebra of subsets of G. Let C ⊆ G be a family of measurable subsets of
G. Recall that the Vapnik-Červonenkis dimension v(C) is defined to be the
smallest m ∈ N0 such that for each set B ⊆ G with m + 1 elements the
following holds

|{B ∩ C : C ∈ C}| < 2m+1,

if there is such an m, and v(C) = ∞, if there is none. If v(C) < ∞, the
family C is called a Vapnik-Červonenkis class. Let µ be a probability measure
on (G,G) and define the following generalization of the indefinite integration
operator

SC : Lp(G,µ) → ℓ∞(C)

by setting for f ∈ Lp(G,µ) and C ∈ C

(SCf)(C) =

∫

C

f(t)dµ(t).

Note that here we have again weighted integration. This time the weight is
fixed, but we seek to approximate simultaneously over a family of integration
domains.

We shall study randomized approximation of SC for Vapnik-Červonenkis
classes C. For this purpose we define the analogue of the simple sampling
algorithm. Let (ξi)

n
i=1 be independent random variables on some probability

space (Ω,Σ,P) with values in G and distribution µ. For f ∈ L1(G,µ), C ∈ C,
and ω ∈ Ω put

(An,ωf)(C) =
1

n

n
∑

i=1

χC(ξi(ω)) f(ξi(ω)).

This algorithm satisfies consistency (1), but may fail the measurability
properties (2) and (3), even for countable C. We refer to [8], Section 6.3
for an argument which is easily seen to cover also the present situation. On
the other hand, it is easy to verify that for countable C we have again the
following weaker measurability property. For each f ∈ Lp(Q)

‖SCf −An,ωf‖ℓ∞(C)

is Σ-measurable.
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The next result generalizes Theorem 6. We adopt the proof of [8], Lemma
3.3 to this general setting. How to pass to the uncountable class involved in
Theorem 6 is discussed below.

Theorem 7. Let 1 ≤ p ≤ ∞, 1 ≤ p1 < ∞, p1 ≤ p, and p̄ = min(p, 2). Then
there is a constant c > 0 such that the following holds. For any (G,G, µ) and
(ξi)

n
i=1 as above, any countable family C ⊆ G and any f ∈ Lp(G,µ)

(

E ‖SCf −An,ωf‖p1ℓ∞(C)

)1/p1
≤ cv(C)1−1/p̄n−1+1/p̄‖f‖Lp(G,µ). (73)

Proof. We fix f ∈ Lp(G,µ). Let C0 ⊆ C be any finite nonempty subset and
let G0 be the algebra of subsets of G generated by C0. Let M(G,G0) denote
the Banach space of signed measures on G0, equipped with the total variation
norm. Introduce an operator JC : M(G,G0) → ℓ∞(C0) defined by

JC0µ = (µ(C))C∈C0 .

According to a result of Pisier [18], Theorem 1 and Remark 6, there is a
constant c > 0 depending only on p̄ such that the type p̄ constant of JC0 ,
recall the definition (4), satisfies

τp̄(JC0) ≤ cv(C0)
1−1/p̄ ≤ cv(C)1−1/p̄. (74)

Define independent, zero mean, M(G,G0)-valued random variables (ηi)
n
i=1 as

follows. For B ∈ G0 we set

ηi(B) =

∫

B

f(t)dµ(t) − χB(ξi)f(ξi).

We have

(

E ‖ηi‖p1M(G,G0)

)1/p1
≤
(

E

(

∫

G

|f(t)|dµ(t) + |f(ξi)|
)p1
)1/p1

≤ 2‖f‖Lp1(G,µ). (75)

Next we apply Lemma 1. We assume that p1 ≥ p̄, the other case then follows
from Hölder’s inequality. Using (74) and (75), we get
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(

E max
C∈C0

∣

∣

∣

∣

∣

∫

C

f(t)dµ(t) − 1

n

n
∑

i=1

χC(ξi)f(ξi)

∣

∣

∣

∣

∣

p1)1/p1

= n−1

(

E

∥

∥

∥

n
∑

i=1

JC0ηi

∥

∥

∥

p1

ℓ∞(C0)

)1/p1

≤ cτp̄(JC0)n
−1

(

n
∑

i=1

(

E ‖ηi‖p1M(G,G0)

)p̄/p1

)1/p̄

≤ cv(C)1−1/p̄n−1+1/p̄‖f‖Lp(G,µ),

from which (73) follows by Fatou’s lemma.
⊓⊔

For G = [0, 1]d, G the σ-algebra of Lebesgue measurable sets, µ the Lebesgue
measure, and

C = C(0) = {[0, x] : x ∈ [0, 1]d ∩ Qd},
where Q denotes the set of rationals, we have v(C(0)) = d, see, e.g., [3], Cor.
9.2.15. Moreover, for f ∈ L1([0, 1]d) and t1, . . . , tn ∈ [0, 1]d

sup
x∈[0,1]d∩Qd

∣

∣

∣

∣

∣

∫

[0,x]

f(t)dt− 1

n

n
∑

i=1

χ[0,x](ti)f(ti)

∣

∣

∣

∣

∣

= sup
x∈[0,1]d

∣

∣

∣

∣

∣

∫

[0,x]

f(t)dt− 1

n

n
∑

i=1

χ[0,x](ti)f(ti)

∣

∣

∣

∣

∣

. (76)

This is an immediate consequence of ’right’-continuity

lim
y→x, y≥x

χ[0,y](t) = χ[0,x](t) (t ∈ [0, 1]d). (77)

Now Theorem 6 follows from Theorem 7.
Given a point set {t1, . . . , tn} ⊂ [0, 1]d, the star discrepancy is defined as

d∗∞(t1, . . . , tn) = sup
x∈[0,1]d

∣

∣

∣

∣

∣

|[0, x)| − 1

n

n
∑

i=1

χ[0,x)(ti)

∣

∣

∣

∣

∣

.

The main result of [9] established tractability of the star-discrepancy, meaning
an estimate which has a negative power in n and a constant which depends
polynomially on d:

Theorem 8. There is a constant c > 0 such that for all d, n ∈ N there exist
t1, . . . , tn ∈ [0, 1]d with

d∗∞(t1, . . . , tn) ≤ cd1/2n−1/2.
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It turns out that we can recover this result – even in a much more general form
– as a direct consequence of Theorem 7. For this purpose, let us introduce the
following generalization of the star-discrepancy. Let (G,G, µ) be a probability
space, C ⊂ G any subfamily, let f ∈ L1(G,µ) be a function (not an equivalence
class) and set for {t1, . . . , tn} ⊂ G

d C,µ,f
∞ (t1, . . . , tn) = sup

C∈C

∣

∣

∣

∣

∣

∫

C

f(t)dµ(t) − 1

n

n
∑

i=1

f(ti)χC(ti)

∣

∣

∣

∣

∣

.

So this discrepancy measures how well the quasi-Monte Carlo method defined
by the point set {t1, . . . , tn} approximates the integral of a function f with
respect to a distribution µ, uniformly over all sets C of a given family C.
From Theorem 7 we obtain

Corollary 7. Let 1 < p ≤ ∞ and p̄ = min(p, 2). Then there is a constant
c > 0 such that for for any probability space (G,G, µ), countable C ⊆ G, and
any function f ∈ Lp(G,µ) there exist t1, . . . , tn ∈ G with

d C,µ,f
∞ (t1, . . . , tn) ≤ cv(C)1−1/p̄n−1+1/p̄‖f‖Lp(G,µ).

If we choose f ≡ 1 and write d C,µ
∞ instead of d C,µ,1

∞ , we have

d C,µ
∞ (t1, . . . , tn) = sup

C∈C

∣

∣

∣

∣

∣

µ(C) − 1

n

n
∑

i=1

χC(ti)

∣

∣

∣

∣

∣

.

Corollary 7 with p = ∞ implies

Corollary 8. There is a constant c > 0 such that for any probability space
(G,G, µ) and countable C ⊆ G there exist t1, . . . , tn ∈ G with

d C,µ
∞ (t1, . . . , tn) ≤ cv(C)1/2n−1/2.

Note that this result was also obtained in [9], Theorem 4, by slightly differ-
ent tools. Theorem 8 follows from Corollary 8 by taking G = [0, 1]d, µ the
Lebesgue measure, and

C = C(1) = {[0, x) : x ∈ [0, 1]d ∩ Qd}.

Then we have again v(C(1)) = d and the analogue of (76) holds, which follows
from ’left’-continuity in place of (77).

In this section we only considered upper bounds. For results on d-dependent
lower bounds we refer to [9, 10, 8].
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