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Abstract

We use the ultraproduct technique to study local properties of basic quan-
tities of information-based complexity theory – the n-th minimal errors.
We consider linear and nonlinear operators in normed spaces, information
consists of continuous linear functionals and is assumed to be adaptive.
We establish ultrastability and disprove regularity of n-th minimal errors.
As a consequence, we answer a question posed by Hinrichs, Novak, and
Woźniakowski in a recent paper (Discontinuous information in the worst
case and randomized settings, Math. Nachr., doi:10.1002/mana.201100128).

1 Introduction

In this paper we apply some techniques from local theory of Banach spaces, in
particular ultraproducts, to information-based complexity theory. Our main goal
is to understand local properties of basic quantities of this theory – the n-th
minimal errors. We consider the deterministic setting with adaptive information
consisting of linear functionals.

The central result of this paper is a stability property of the n-th minimal
errors with respect to ultraproducts. We present the analysis for arbitrary, in
general nonlinear, continuous operators defined on open sets. As an intermediate
step towards this we introduce a suitable generalization of the ultraproduct of
linear operators to this nonlinear situation. We also provide a counterexample
showing that the considered n-th minimal errors are not regular.

Hinrichs, Novak, and Woźniakowski asked in [5], whether the n-th minimal
error of a continuous operator is the supremum of the n-th minimal errors of all
its restrictions to finite dimensional subspaces. As a consequence of our main
result on ultrastability, we obtain the negative answer to this question.

On the other hand, using again ultrastability, we show that the answer is
positive if the operator is compact or the target space is 1-complemented in its
bidual.
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Finally we also discuss the linear case, in which the n-th minimal errors are
s-numbers and the results proved can be formulated in terms of s-number proper-
ties. Connections of information-based complexity to s-number theory were first
explored by Mathé [7].

The paper is organized as follows. In Section 2 we introduce notation and
present some basic facts from information-based complexity theory and Banach
space ultraproducts. In particular, a suitable notion of the ultraproduct of non-
linear operators is given. Section 3 contains the main result on ultrastability. In
section 4 we apply this to various questions of locality of n-th minimal errors and
present a counterexample. The final section 5 contains various additional results,
in particular the case of linear operators in Banach spaces, as well as a further
discussion of ultraproducts of nonlinear operators.

2 Notation

For a normed space (by which we always mean normed linear space) X we let X∗

be the dual space, that is, the space of continuous linear functionals on X. Let BX

be the unit ball of X and, with Y being a normed space, as well, we let L(X, Y )
be the space of bounded linear operators from X to Y . For a set B ⊂ X we
denote the interior by B◦ and the (not necessarily closed) linear hull by spanB.
The canonical embedding of X into its bidual X∗∗ is denoted by KX . We say
that X is 1-complemented in its bidual, if there is a projection of norm one from
X∗∗ onto KX(X) ⊂ X∗∗. Finally, we let N = {1, 2, . . . } and N0 = N ∪ {0}.

We start with notation related to information-based complexity theory. For
background we refer to [10, 8]. Information-based complexity theory is aiming at
investigating general classes of algorithms for computational problems of analysis,
finding algorithms of optimal behaviour, minimal possible errors, lower bounds,
and understanding the complexity, that is, the intrinsic difficulty of such compu-
tational problems.

Let us first give an informal description. The goal of an algorithm is to
approximate the solution S(x) ∈ Y of a numerical problem, represented by a
mapping S : F → Y , where F ⊂ X is a subset, at input x ∈ F . The algorithm
can access x only by evaluating a limited number of linear functionals.

One of the basic approaches to a general notion of an algorithm is the fol-
lowing. The algorithm starts with evaluating a functional L1 ∈ X∗ at the input
x, that is L1(x). Depending on this value, another functional L2 ∈ X∗ is chosen
and L2(x) is evaluated. The choice of the next functional L3 ∈ X∗ may depend
on L1(x) and L2(x), and so on. The procedure goes on until n values Lj(x)
(j = 1, . . . , n) are obtained, the ’information’ about x. On the basis of this infor-
mation a final mapping ϕ : Rn → Y is applied, representing the computations on
the information leading to the approximation to S(x) in Y . This is formalized as
follows.
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For a normed space X and n ∈ N we first define N ad
n (X). An element N ∈

N ad
n (X) is a tuple N = (L1, . . . , Ln), where

L1 ∈ X∗

and for 2 ≤ k ≤ n,
Lk : X × Rk−1 → R

is a function such that for all (a1, . . . , ak−1) ∈ Rk−1

Lk( · , a1, . . . , ak−1) ∈ X∗.

Given N ∈ N ad
n (X), we associate with it a mapping N : X → Rn (we use the

same letter) as follows. For x ∈ X put

L1(x) = a1

Li(x, a1, . . . , ai−1) = ai (2 ≤ i ≤ n)

and
N(x) = (a1, a2, . . . , an).

Let Φn(Y ) be the set of all mappings ϕ : Rn → Y . Given any nonempty set
F ⊂ X, another normed space Y , and an arbitrary mapping S : F → Y , we
define for N ∈ N ad

n (X) and ϕ ∈ Φn(Y )

e(S, ϕ ◦N,F, Y ) = sup
x∈F

‖S(x)− ϕ(N(x))‖,

which is the error of ϕ ◦N as an approximation of S on F . For n ∈ N0 the n-th
minimal error is defined as follows. If n = 0, we put

e0(S, F,X, Y ) = inf
y∈Y

sup
x∈F

‖S(x)− y‖,

and if n ≥ 1, we set

en(S, F,X, Y ) = inf
N∈N ad

n (X),ϕ∈Φn(Y )
e(S, ϕ ◦N,F, Y ).

These quantities play a crucial role in lower bound proofs of information-based
complexity theory. Indeed, it follows from the definition that no algorithm for the
approximation of S on F that uses n linear functionals can have a smaller error
than en(S, F,X, Y ). Let us note some simple properties, which we need later on.

If X is a (linear, not necessarily closed) subspace of a normed space X̃, then
for each N ∈ N ad

n (X) there exists an Ñ ∈ N ad
n (X̃) with

Ñ(x) = N(x) (x ∈ X). (1)
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Indeed, if N = (L1, . . . , Ln), we define Ñ = (L̃1, . . . , L̃n) in such a way that
L̃k( · a1, . . . , ak−1) is any continuous linear extension of Lk( · a1, . . . , ak−1) to all of
X̃ (e.g., by the Hahn-Banach theorem). Therefore we have

e(S, ϕ ◦N,F, Y ) = e(S, ϕ ◦ Ñ , F, Y ) (2)

for all ϕ ∈ Φn(Y ). Conversely, if we start with any Ñ ∈ N ad
n (X̃) and let N ∈

N ad
n (X) be obtained by restriction of L̃( · , a1, . . . , ak−1) to X, then (1) and (2)

hold again. It follows that

en(S, F,X, Y ) = en(S, F, X̃, Y ), (3)

so the n-th minimal error depends only on spanF (endowed with the induced
norm), not on the particular superspace containing spanF . As a consequence,
we drop the indication of the source space X in the notation en(S, F,X, Y ) and
write en(S, F, Y ) in the sequel.

Concerning the target space, let us denote the completion of Y by Ŷ . Then
it is obvious from the definition that

e(S, F, Y ) = e(S, F, Ŷ ).

On the basis of these remarks we may assume without loss of generality (and do
so in Section 5.3) that X and Y are Banach spaces.

Next suppose N ∈ N ad
n (X) and U ∈ L(X1, X) with X1 another normed space.

Then we can define a new information operator N ◦ U = (L̃1, . . . , L̃n) by setting

L̃1(x1) = L1(Ux1) (x1 ∈ X1). (4)

and for 2 ≤ k ≤ n and a1, . . . , ak−1 ∈ Rk−1

L̃k(x1, a1, . . . , ak−1) = Lk(Ux1, a1, . . . , ak−1) (x1 ∈ X1). (5)

It is readily checked that N ◦ U ∈ N ad
n (X1) and

(N ◦ U)(x1) = N(Ux1) (x1 ∈ X1).

Lemma 2.1. Let X, Y, S, F be as above, let X1, Y1 be normed spaces, U ∈
L(X1, X), ∅ 6= F1 ⊂ X1 a subset with U(F1) ⊂ F , and let V : Y → Y1 be a
mapping with Lipschitz constant ‖V ‖Lip < ∞. Then for all N ∈ N ad

n (X) and
ϕ ∈ Φn(Y )

e(V SU, (V ◦ ϕ) ◦ (N ◦ U), F1, Y1) ≤ ‖V ‖Lip e(S, ϕ ◦N,F, Y ). (6)

Consequently,
en(V SU, F1, Y1) ≤ ‖V ‖Lip en(S, F, Y ). (7)

If V ∈ L(Y, Y1) is an isometry, that is ‖V x‖ = ‖x‖ (x ∈ X), then

en(S, F, Y ) ≤ 2en(V S, F, Y1). (8)

Finally, if S is linear and λ ∈ R, then

en(λS, F, Y ) = en(S, λF, Y ) = |λ|en(S, F, Y ). (9)
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Proof. We have

e(V SU, (V ◦ ϕ) ◦ (N ◦ U), F1, Y1)

= sup
x1∈F1

‖V S(Ux1)− V ϕ(N(Ux1))‖

≤ ‖V ‖Lip sup
x1∈F1

‖S(Ux1)− ϕ(N(Ux1))‖

≤ ‖V ‖Lip sup
x∈F

‖S(x)− ϕ(N(x))‖,

which proves (6) and hence (7).
To prove (8), let ε > 0 and let N ∈ N ad

n (X), ϕ1 ∈ Φn(Y1) be such that

sup
x∈F

‖V S(x)− ϕ1(N(x))‖ ≤ en(V S, F, Y1) + ε.

For a ∈ N(F ) we take any xa ∈ F with N(xa) = a and put ϕ(a) = S(xa). For
a ∈ Rn \ N(F ) we put ϕ(a) = 0 ∈ Y . This defines ϕ ∈ Φn(Y ). Now let x ∈ F
and a = N(x). Then

‖S(x)− ϕ(N(x))‖
= ‖S(x)− S(xa)‖ = ‖V S(x)− V S(xa)‖
≤ ‖V S(x)− ϕ1(N(x))‖+ ‖V S(xa)− ϕ1(N(xa))‖
≤ 2en(V S, F, Y1) + 2ε,

which proves (8).
If S is linear and λ ∈ R, then we conclude, using (7) repeatedly,

|λ|en(S, F, Y ) = |λ|en(λ−1λS, F, Y ) ≤ en(λS, F, Y )

≤ en(S, λF, Y ) = en(λ−1λS, λF, Y )

≤ en(λS, F, Y )| ≤ |λ|en(S, F, Y ).

If F ⊂ X is absolutely convex and S : X → Y is linear, we define for n ∈ N

c0(S, F, Y ) = sup
x∈F

‖S(x)‖,

cn(S, F, Y ) = inf
f1,...,fn∈X∗

sup
x∈F,f1(x)=...=fn(x)=0

‖S(x)‖ (n ≥ 1).

If X and Y are Banach spaces, F = BX and S ∈ L(X, Y ), then cn(S,BX , Y ) is
the n-th Gelfand number of S. For the following result we refer to [10], ch. 5.4.

Lemma 2.2. Let F ⊂ X be absolutely convex and S : X → Y linear. Then

cn(S, F, Y ) ≤ en(S, F, Y ) ≤ 2cn(S, F, Y ).

Moreover, if Y = `∞(D) for some set D, then

en(S, F, Y ) = cn(S, F, Y ). (10)
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Hence, if F ⊂ X is absolutely convex and S : X → Y is linear, we have

en(S, F, Y ) ≤ 2cn(S, F, Y ) = 2cn(KY S, F, Y
∗∗) ≤ 2en(KY S, F, Y

∗∗).

Now let us turn to ultraproducts. For background on filters and ultrafilters we
refer to [2], for Banach space ultraproducts to [4]. Ultrafilters and ultraproducts
are an elegant and convenient way of handling various compactness arguments.

Let us briefly review some notions. A filter F on a nonempty set I is a set of
nonempty subsets of I such that I1, I2 ∈ F implies I1∩I2 ∈ F and I1 ∈ F implies
I2 ∈ F for any superset I2 ⊇ I1. A filter F2 dominates a filter F1 if F1 ⊂ F2. An
ultrafilter is a filter U such that each filter dominating U coincides with U . Each
filter is dominated by some ultrafilter. Let us note that this statement, which
is basic to our paper, requires the axiom of choice (via Zorn’s Lemma). Given
I0 ∈ U , we let

U|I0 = {I1 ∈ U : I1 ⊂ I0}

be the induced ultrafilter on I0. An ultrafilter U is called countably incomplete,
if there is a sequence (In)∞n=1 with In ∈ U and ∩∞n=1In = ∅.

Ultrafilters have the following properties. Given an arbitrary set I0 ⊂ I, then
either I0 ∈ U or I \ I0 ∈ U . For ti, t ∈ T (i ∈ I) with T a topological space, we
write

t = lim
U
ti

if {i ∈ I : ti ∈ V } ∈ U for each neighborhood V of t. If T is compact, then for
each family (ti)i∈I ⊂ T there exists a t ∈ T such that t = limU ti. This is the
key property for various compactness arguments ultrafilters and ultraproducts
are used in.

Given a family of normed spaces (Xi)i∈I , we denote by `∞(I,Xi) the normed
space of all families (xi)i∈I with xi ∈ Xi and

‖(xi)i∈I‖`∞(I,Xi) = sup
i∈I

‖xi‖ <∞.

For an ultrafilter U on I, we define the ultraproduct (Xi)U as the set of all
equivalence classes (xi)U of families (xi)i∈I ∈ `∞(I,Xi) under the equivalence
relation

(xi)i∈I ∼U (yi)i∈I iff lim
U
‖xi − yi‖ = 0.

Equipped with the norm
‖(xi)U‖ = lim

U
‖xi‖,

(Xi)U becomes a normed space. If all Xi are Banach spaces, then (Xi)U is a
Banach space. The ultraproduct of the dual spaces (X∗

i )U can be identified with
a subspace of (Xi)

∗
U by setting for f = (fi)U ∈ (X∗

i )U and x = (xi)U ∈ (Xi)U

f(x) = lim
U
fi(xi).
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If Xi ≡ X, the ultraproduct is called an ultrapower and is denoted by (X)U .
Let Xi, Yi be normed spaces and Si ∈ L(Xi, Yi) (i ∈ I) be bounded linear

operators satisfying
sup

I
‖Si‖ <∞.

Then the ultraproduct (Si)U ∈ L((Xi)U , (Yi)U) is defined for (xi)U ∈ (Xi)U by

(Si)U(xi)U = (Sixi)U .

If Xi ≡ X, Yi ≡ Y , and Si ≡ S, we write (S)U ∈ L((X)U , (Y )U).
Now we generalize this to nonlinear mappings defined on subsets (compare

[1], chapter 2.V). Let ∅ 6= Fi ⊂ Xi and let Si : Fi → Yi be arbitrary mappings
(i ∈ I). We let

D((Si, Fi),U) ⊂ (Xi)U

– the domain of definition of the ultraproduct – be the set of all x ∈ (Xi)U such
that there exists a family (xi) ∈ `∞(I,Xi) with (xi)U = x,

{i ∈ I : xi ∈ Fi} ∈ U , (11)

lim
U|{i∈I: xi∈Fi}

‖Si(xi)‖ < ∞, (12)

and for each family (zi) ∈ `∞(I,Xi) with (zi)U = x and {i ∈ I : zi ∈ Fi} ∈ U we
have

lim
U|{i∈I: xi,zi∈Fi}

‖Si(xi)− Si(zi)‖ = 0. (13)

We note that
D((Si, Fi),U) ⊂ (spanFi)U . (14)

Clearly, D((Si, Fi),U) could be empty. If this is not the case, we define the
ultraproduct

(Si)U : D((Si, Fi),U) → (Yi)U

as follows. For x ∈ D((Si, Fi),U) with x = (xi)U being any representation satis-
fying (11) we put

(Si)U(x) = (yi)U , yi =

{
Si(xi) if xi ∈ Fi

0 otherwise.

The definition of D((Si, Fi),U) ensures that (Si)U is well-defined.
For our applications to information-based complexity we slightly restrict the

domain of definition (we comment on the relation of both domains in Section
5.2). We let

D0((Si, Fi),U) ⊂ D((Si, Fi),U)

be the set of all x ∈ D((Si, Fi),U) with the following additional property: For
each family (xi) ∈ `∞(I, spanFi) with (xi)U = x we have

{i ∈ I : xi ∈ Fi} ∈ U . (15)
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The above definition for uniformly bounded linear operators is a special case with
Fi = Xi and D0((Si, Fi),U) = D((Si, Fi),U) = (Xi)U . Note that if Fi = B◦Xi

, then

D0((Si, Fi),U) ⊂ B◦(Xi)U
.

Finally, if Xi ≡ X, Yi ≡ Y , Fi ≡ F , Si ≡ S : F → Y , we write (S)U and
D((S, F ),U), resp. D0((S, F ),U). If F is open and S is continuous, then

J(F ) ⊂ D0((S, F ),U), (16)

where J is the canonical embedding of X into (X)U given by

Jx = (x)U (x ∈ X). (17)

We refer to Section 5.2 for further details on the ultraproduct of nonlinear oper-
ators.

Let us recall the principle of local reflexivity [6, 3], which we will apply several
times.

Lemma 2.3. Let X be a normed space, E ⊂ X∗∗ a finite dimensional subspace,
n ∈ N, f1, . . . , fn ∈ X∗, and ε > 0. Then there is an invertible linear operator
T from E onto a subspace of X such that ‖T‖‖T−1‖ ≤ 1 + ε, Tx = x for all
x ∈ E ∩X and (Tu, fk) = (u, fk) for all u ∈ E, k = 1, . . . , n.

This principle is usually stated for X being a Banach space, but the case of
a normed space X follows readily from the statement for the completion X̂ of X
by noting that for f1, . . . , fn ∈ X∗ (= X̂∗) and a1, . . . , an ∈ R the set

{x ∈ X : f1(x) = a1, . . . , fn(x) = an}

is dense in
{x ∈ X̂ : f1(x) = a1, . . . , fn(x) = an}.

3 Ultrastability

In this section we prove the central result of this paper. The following two
lemmas, which are of geometric nature, serve as preparations. The first lemma
shows that an arbitrary information operator can be replaced equivalently by an
information operator possessing certain uniformity properties (required later on
for taking ultraprocucts).

Lemma 3.1. Let n ∈ N, let X be a normed space with dimX ≥ n, let 0 < δ < 1
and M ∈ N ad

n (X). Then there exists N = (L1, . . . , Ln) ∈ N ad
n (X) such that the

following hold: ‖L1‖ = 1 and for all a1, . . . , an−1 ∈ R and 1 < k ≤ n

‖Lk( · , a1, . . . , ak−1)‖ = 1 (18)

dist(Lk( · , a1, . . . , ak−1), Ek−1) = 1, (19)
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where
Ek−1 = span(L1, L2( · , a1), . . . , Lk−1( · , a1, . . . , ak−2)).

Moreover, there is a mapping ψ : Rn → Rn such that for all x ∈ X

M(x) = ψ(N(x)). (20)

Proof. We argue by induction over n. Let n = 1, M = M1. If M1 6= 0 we put
L1 = ‖M1‖−1M1 and if M1 = 0, we let L1 ∈ X∗ be any element of norm 1. In
both cases we set ψ1(a1) = ‖M1‖a1. Obviously, (20) is satisfied.

Now let n > 1 and assume that the statement is correct for n − 1. Let M ∈
N ad

n (X), M = (M1, . . . ,Mn). Clearly, M̃ = (M1, . . . ,Mn−1) ∈ N ad
n−1(X). By

assumption, there is an Ñ = (L1, . . . , Ln−1) ∈ N ad
n−1(X) and a ψ̃ : Rn−1 → Rn−1

such that the statement of the lemma holds for M̃, Ñ , ψ̃.
Let a1, . . . , an ∈ R and let

g1 = L1

gj = Lj( · , a1, . . . , aj−1) (2 ≤ j ≤ n− 1).

Put
(b1, . . . , bn−1) = ψ̃(a1, . . . , an−1)

and define
fn = Mn( · , b1, . . . , bn−1).

We consider two cases. If

fn 6∈ span(g1, . . . , gn−1),

we choose gn ∈ span(g1, . . . , gn−1, fn) with

‖gn‖ = 1 and dist(gn, span(g1, . . . , gn−1)) = 1. (21)

On the other hand, if
fn ∈ span(g1, . . . , gn−1),

we let gn be any element of X∗ satisfying (21). In both cases there are d1, . . . , dn ∈
R such that

fn =
n∑

j=1

djgj.

Now we define

Ln( · , a1, . . . , an−1) = gn

N = (L1, . . . , Ln−1, Ln)

ψ(a1, . . . , an) =
(
ψ̃(a1, . . . , an−1),

n∑
j=1

djaj

)
.
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Properties (18) and (19) follow from the construction. It remains to show (20).
Let x ∈ X and put

a1 = L1(x)

aj = Lj(x, , a1, . . . , aj−1) (2 ≤ j ≤ n)

b1 = M1(x)

bj = Mj(x, , b1, . . . , bj−1) (2 ≤ j ≤ n).

By the induction assumption,

(b1, . . . , bn−1) = ψ̃(a1, . . . , an−1),

while by construction

bn = Mn(x, b1, . . . , bn−1) = fn(x) =
n∑

j=1

djgj(x) =
n∑

j=1

djaj,

so

(b1, . . . , bn−1, bn) =
(
ψ̃(a1, . . . , an−1),

n∑
j=1

djaj

)
= ψ(a1, . . . , an).

The next lemma is a simple geometric fact on the existence of biorthogonal
sequences with uniform norm bounds.

Lemma 3.2. Let X be a normed space, 0 < δ ≤ 1, n ∈ N, and let f1, . . . , fn ∈ X∗

be such that ‖fk‖ = 1 (1 ≤ k ≤ n) and for 1 < k ≤ n

dist(fk, span(f1, . . . , fk−1)) ≥ δ.

Then for each ε > 0 there exist x1, . . . , xn ∈ X such that

fj(xk) = δjk and ‖xk‖ ≤ (1 + ε)(1 + δ−1 + ε)n−k (1 ≤ j, k ≤ n).

Proof. We use induction over n. The case n = 1 is obvious. Assuming that n ≥ 2
and the statement holds for n − 1, we find z1, . . . , zn−1 such that fj(zk) = δjk
(1 ≤ j, k ≤ n− 1) and

‖zk‖ ≤ (1 + ε)(1 + δ−1 + ε)n−1−k.

Consider the functional h on span(f1, . . . , fn) defined by

h(fk) = 0 (1 ≤ k ≤ n− 1), h(fn) = 1.
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Then ‖h‖ ≤ δ−1. Extend h to all of X∗ with preservation of the norm and use
the local reflexivity Lemma 2.3 to find an xn ∈ X such that

‖xn‖ ≤ δ−1 + ε

and
fk(xn) = 0 (1 ≤ k ≤ n− 1), fn(xn) = 1.

Now we put for 1 ≤ k ≤ n− 1

xk = zk − fn(zk)xn.

Hence, for 1 ≤ j, k ≤ n we have fj(xk) = δjk and

‖xk‖ ≤ ‖zk‖(1 + ‖xn‖) ≤ (1 + ε)(1 + δ−1 + ε)n−k.

Now we are ready to state the main result of this paper, which shows that
the n-th minimal errors are ultrastable, meaning that the n-th minimal error of
an ultraproduct is bounded from above by the limit of the n-th minimal errors
of the factors. This result will have numerous applications, most of them to be
discussed in the next section.

Theorem 3.3. Let I be a nonempty set, let Xi, Yi be normed spaces, ∅ 6= Fi ⊂ Xi

arbitrary subsets, Si : Fi → Yi arbitrary mappings (i ∈ I), and let U be an
ultrafilter on I. Assume that D0((Si, Fi),U) 6= ∅. Then for all n ∈ N0

en

(
(Si)U ,D0((Si, Fi),U), (Yi)U

)
≤ lim

U
en(Si, Fi, Yi). (22)

If, moreover, U is countably incomplete, then for each n there exist
N ∈ N ad

n ((Xi)U) and ϕ ∈ Φn((Yi)U) such that

e
(
(Si)U , ϕ ◦N,D0((Si, Fi),U), (Yi)U

)
≤ lim

U
en(Si, Fi, Yi). (23)

Proof. If limU en(Si, Fi, Yi) = ∞, then the result holds trivially. So we suppose

lim
U
en(Si, Fi, Yi) <∞. (24)

Furthermore, we can assume

spanFi = Xi (i ∈ I), (25)

since enlarging the source space affects none of the quantities involved in (22) or
(23), see (1–3) and (14).

If limU dimXi < n, then {i ∈ I : dimXi < n} ∈ U and dim(Xi)U < n. It
readily follows that both sides of (22) are zero. Thus, we suppose

lim
U

dimXi ≥ n.
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Then we can assume without loss of generality that dimXi ≥ n for all i ∈ I,
since changing the factors on a set I1 6∈ U does not affect the ultraproduct (of
spaces and operators). For each i ∈ I, let 0 < εi ≤ 1 (to be specified later),
Ni = (L1,i, . . . , Ln,i) ∈ N ad

n (Xi) and ϕi ∈ Φn(Yi) with

e(Si, ϕi ◦Ni, Fi, Yi) ≤ en(Si, Fi, Yi) + εi, (26)

where we assume the Ni to satisfy the properties in Lemma 3.1. Define N =
(L1, . . . , Ln) ∈ N ad

n

(
(Xi)U

)
as follows. For k = 1 we set

L1 = (L1,i)U ∈ (Xi)
∗
U (27)

and for k > 1 and a1, . . . , ak−1 ∈ R

Lk =
(
Lk,i( · , a1, . . . , ak−1)

)
U ∈ (Xi)

∗
U . (28)

Next we define ϕ ∈ Φn((Yi)U). Let a ∈ Rn. If limU ‖ϕi(a)‖ <∞, we set

Ia = {i ∈ I : ‖ϕi(a)‖ ≤ lim
U
‖ϕi(a)‖+ 1}

and

ϕ(a) = (yi)U , yi =

{
ϕi(a) if i ∈ Ia,
0 otherwise.

(29)

If limU ‖ϕi(a)‖ = ∞, we put
ϕ(a) = 0.

Now let x = (xi)U ∈ D0((Si, Fi),U) and N(x) = a = (a1, . . . , an). By (27) and
(28)

lim
U
L1,i(xi) = a1 (30)

lim
U
Lk,i(xi, a1, . . . , ak−1) = ak (2 ≤ k ≤ n). (31)

Define for 1 ≤ k ≤ n, i ∈ I

β1,i = a1 − L1,i(xi) (32)

βk,i = ak − Lk,i(xi, a1, . . . , ak−1) (2 ≤ k ≤ n). (33)

By the assumptions on Ni,

sup
i∈I

|βk,i| ≤ |ak|+ sup
i∈I

‖xi‖ <∞. (34)

Put

f1,i = L1,i ∈ X∗
i (35)

fk,i = Lk,i( · a1, . . . , ak−1) ∈ X∗
i (2 ≤ k ≤ n). (36)

12



Again by our assumptions on the Ni we can apply Lemma 3.2 with ε = δ = 1 to
find zk,i ∈ Xi such that

fj,i(zk,i) = δjk and ‖zk,i‖ ≤ 2 · 3n−k (1 ≤ j, k ≤ n).

Define

vi =
n∑

k=1

βk,izk,i.

Then
fk,i(vi) = βk,i (37)

and

‖vi‖ ≤ 2
n∑

k=1

3n−k|βk,i|. (38)

It follows from (32–37) that

L1,i(xi + vi) = a1 (39)

Lk,i(xi + vi, a1, . . . , ak−1) = ak (2 ≤ k ≤ n). (40)

Moreover, (34) and (38) imply that supi∈I ‖vi‖ <∞, and from (30–33) and (38)
we conclude limU ‖vi‖ = 0. Consequently,

(xi + vi)U = (xi)U = x ∈ D0((Si, Fi),U). (41)

By (15), (25), and (41),

I0 := {i ∈ I : xi + vi ∈ Fi} ∈ U .

Moreover, by (39–40), Ni(xi + vi) = a. Thus (26) gives for i ∈ I0
‖Si(xi + vi)− ϕi(a)‖ ≤ en(Si, Fi, Yi) + εi. (42)

Therefore we get from (12), (13), and (41)

lim
U|I0

‖Si(xi + vi)‖ <∞.

This together with (24) and (42) implies limU ‖ϕi(a)‖ < ∞, and we conclude
from (29), (41), and (42) that

‖(Si)U(x)− ϕ(a)‖ = lim
U|I0

‖Si(xi + vi)− ϕi(a)‖

≤ lim
U
en(Si, Fi, Yi) + lim

U
εi.

Hence,

e
(
(Si)U , ϕ ◦N,D0((Si, Fi),U), (Yi)U

)
≤ lim

U
en(Si, Fi, Yi) + lim

U
εi.

If U is arbitrary, we take any ε > 0 and put εi ≡ ε, which yields (22). If U is
countably incomplete, then we let (Ik)

∞
k=1 be such that I1 ⊃ I2 ⊃ . . . , Ik ∈ U

and ∩∞k=1Ik = 0. Now we set εi = 1 for i 6∈ I1 and εi = 1/k for i ∈ Ik \ Ik+1

(k = 1, 2, . . . ). This gives limU εi = 0 and (23) follows.
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Let us mention a first consequence of Theorem 3.3, which shows that under
quite general assumptions the n-th minimal error is attained.

Corollary 3.4. Let X, Y be normed spaces, ∅ 6= F ⊂ X open, S : F → Y
continuous, and assume that Y is 1-complemented in Y ∗∗. Then for each n ∈ N
there exist N ∈ N ad

n (X) and ϕ ∈ Φn(Y ) such that ϕ◦N attains the n-th minimal
error, i.e.,

e(S, ϕ ◦N,F, Y ) = en(S, F, Y ). (43)

Proof. Let P : Y ∗∗ → Y be a projection with ‖P‖ = 1. Let U be any non-trivial
ultrafilter on N (meaning that U is not generated by a one-element set), hence U
is countably incomplete. Let J : X → (X)U be the embedding defined in (17).
Define a mapping Q : (Y )U → Y ∗∗ by setting for (yi)U and g ∈ Y ∗

(Q(yi)U , g) = lim
U

(yi, g).

For x ∈ F we have, by (16), Jx ∈ D0((S, F ),U). Moreover, for g ∈ Y ∗ we get

(Q(S)UJx, g) = (Q(Sx)U , g) = (Sx, g).

Consequently,
Q(S)UJx = KY Sx,

and hence,
PQ(S)UJ |F = S.

On the other hand, by (23) of Theorem 3.3, there are Ñ ∈ N ad
n ((X)U) and

ϕ̃ ∈ Φn((Y )U) such that

e
(
(S)U , ϕ̃ ◦ Ñ ,D0((S, F ),U), (Y )U

)
≤ en(S, F, Y ). (44)

Now we put N = Ñ ◦ J ∈ N ad
n (X) (see (4) and (5)) and ϕ = PQ ◦ ϕ̃ ∈ Φn(Y ).

Then, since by (16), J(F ) ⊂ D0((S, F ),U), (Y )U
)

and ‖PQ‖ = 1, relation (6) of
Lemma 2.1 together with (44) gives

en(S, F, Y ) ≤ e(S, ϕ ◦N,F, Y )

≤ e
(
(S)U , ϕ̃ ◦ Ñ ,D0((S, F ),U), (Y )U

)
≤ en(S, F, Y ).

4 Local properties

The main theme of this section is the relation of the n-th minimal errors of an
operator to those of its local, that is, finite dimensional parts (explained precisely
in (47)). Throughout this section not only the original operator S : F → Y will
play a role, but also its canonical extension KY S : F → Y ∗∗ to the bidual of Y .
The first lemma, which is a consequence of the local reflexivity principle, Lemma
2.3, relates the n-th minimal errors of S to those of KY S.
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Lemma 4.1. Let X, Y be normed spaces and let ∅ 6= F ⊂ X and S : F → Y be
arbitrary. If S(F ) is precompact or Y is 1-complemented in Y ∗∗, then

en(KY S, F, Y
∗∗) = en(S, F, Y ).

Proof. Since ‖KY ‖ = 1, we always have en(KY S, F, Y
∗∗) ≤ en(S, F, Y ). If P is a

projection from Y ∗∗ to Y with ‖P‖ = 1, then

en(S, F, Y ) ≤ ‖P‖en(KY S, F, Y
∗∗) = en(KY S, F, Y

∗∗).

It remains to consider the case of precompact S(F ). Let δ > 0 and let N ∈
N ad

n (X), ϕ̃ ∈ Φn(Y ∗∗) be such that

sup
a∈N(F )

sup
x∈F,N(x)=a

‖S(x)− ϕ̃(a)‖ ≤ en(KY S, F, Y
∗∗) + δ. (45)

Fix any a ∈ N(F ). The set {S(x) : x ∈ F,N(x) = a} is precompact in Y . Hence,
there are x1, . . . , xm ∈ F such that N(xk) = a (k = 1, . . . ,m) and

sup
x∈F,N(x)=a

inf
1≤k≤m

‖S(x)− S(xk)‖ ≤ δ.

By local reflexivity, see Lemma 2.3, there is a linear operator

T : span{S(x1), . . . , S(xm), ϕ̃(a)} → Y

with
‖T‖ ≤ 1 + δ and TS(xk) = S(xk) (k = 1, . . . ,m).

We put ϕ(a) = T ϕ̃(a) ∈ Y . Then

‖S(x)− ϕ(a)‖ ≤ max
1≤k≤m

‖S(xk)− ϕ(a)‖+ δ

= max
1≤k≤m

‖TS(xk)− T ϕ̃(a)‖+ δ

≤ (1 + δ) max
1≤k≤m

‖S(xk)− ϕ̃(a)‖+ δ

≤ (1 + δ) sup
x∈F,N(x)=a

‖S(x)− ϕ̃(a)‖+ δ. (46)

Extend ϕ defined so far on N(F ) in an arbitrary way to all of Rn so that ϕ ∈
Φn(Y ). By (45) and (46)

e(S, ϕ ◦N,F, Y ) ≤ (1 + δ)(en(KY S, F, Y
∗∗) + δ) + δ.

This shows that en(S, F, Y ) ≤ en(KY S, F, Y
∗∗) and concludes the proof.
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Given a subspace E ⊂ X and a closed subspace G ⊂ Y we let JE : E → X
be the canonical embedding and QG : Y → Y/G the canonical quotient map. By
Dim(X), respectively Cod(X), we denote the collection of all finite dimensional,
respectively closed finite codimensional, subspaces of X. Furthermore, given a
subset ∅ 6= F ⊂ X and a subspace E ⊂ X with F ∩ E 6= ∅, we let JF∩E :
F ∩E → F be the embedding. Let Dim(F,X) be the set of all E ∈ Dim(X) with
F ∩ E 6= ∅.

Next we study the relation of n-th minimal errors of local parts of the operator
S to the n-th minimal errors of S. By local (finite dimensional) parts we mean
the operators

QGSJF∩E : F ∩ E JF∩E−−−→ F
S−→ Y

QG−−→ Y/G, (47)

acting between finite dimensional spaces, where E ∈ Dim(F,X) andG ∈ Cod(Y )).
It turns out that, in general, the errors of the local parts are rather related to the
errors of KY S than to those of S.

Proposition 4.2. Let X and Y be normed spaces, let ∅ 6= F ⊂ X be open and
S : F → Y continuous. Then

en(KY S, F, Y
∗∗) = sup

E∈Dim(F,X),G∈Cod(Y )

en(QGSJF∩E, F ∩ E, Y/G) (48)

= sup
G∈Cod(Y )

en(QGS, F, Y/G) (49)

= sup
E∈Dim(F,X)

en(KY SJF∩E, F ∩ E, Y ∗∗). (50)

Moreover, if S(F ∩E) is precompact for every E ∈ Dim(F,X), then we also have

en(KY S, F, Y
∗∗) = sup

E∈Dim(F,X)

en(SJF∩E, F ∩ E, Y ). (51)

Proof. Let I = Dim(F,X) × Cod(Y ) and let F be the filter of all sets I0 ⊂ I
such that there exist E0 ∈ Dim(F,X) and G0 ∈ Cod(Y ) with

I0 = {(E,G) : E0 ⊂ E,G0 ⊃ G}.

Let U be an ultrafilter dominating F . For the components of i ∈ I we use
the notation i = (Ei, Gi). We can identify X with a subspace of (Ei)U via the
isometric embedding

J : X → (Ei)U , Jx = (xi)U ,

where

xi =

{
0 if x 6∈ Ei

x if x ∈ Ei.

Furthermore, we define a mapping

Q : (Y/Gi)U → Y ∗∗
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as follows. For (zi)U ∈ (Y/Gi)U we choose any family (yi) ∈ `∞(I, Y ) with
QGi

yi = zi (i ∈ I) and define Q(zi)U ∈ Y ∗∗ by setting for g ∈ Y ∗

(Q(zi)U , g) = lim
U
g(yi).

It is readily checked that this definition is correct and that ‖Q‖ = 1.
Let x ∈ F . First we prove that

Jx ∈ D0((QGi
SJF∩Ei

, F ∩ Ei),U).

We have
{i ∈ I : xi ∈ F ∩ Ei} ∈ U ,

which shows (11). Furthermore, for all i ∈ I with x ∈ Ei we have

QGi
SJF∩Ei

xi = QGi
Sx, (52)

hence
‖QGi

SJF∩Ei
xi‖ ≤ ‖QGi

Sx‖ ≤ ‖Sx‖,

which implies (12). Let (yi) ∈ `∞(I, Ei) be such that (yi)U = Jx. Then

lim
U
‖yi − x‖ = 0

and, since F is open,

{i ∈ I : yi ∈ F ∩ Ei} = {i ∈ I : yi ∈ F} ∈ U ,

which shows (15). Moreover, by the continuity of S,

lim
U|{i∈I: yi∈F∩Ei}

‖S(yi)− S(x)‖ = 0,

from which we infer

lim
U|{i∈I: xi,yi∈F∩Ei}

‖QGi
SJF∩Ei

yi −QGi
SJF∩Ei

xi‖ = 0,

which is condition (13).
Next we prove that

Q(QGi
SJF∩Ei

)UJx = KY Sx. (53)

It follows from (52) that

(QGi
SJF∩Ei

)UJx = (QGi
Sx)U . (54)

By the definition of Q above, for any g ∈ Y ∗

(Q(QGi
Sx)U , g) = (Sx, g),
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which together with (54) proves (53). So we have

KY S : F
J−→ D0((QGi

SJF∩Ei
, F ∩ Ei),U)

(QGi
SJF∩Ei

)U−−−−−−−−→ (Y/Gi)U
Q−→ Y ∗∗.

By Theorem 3.3,

en(KY S, F, Y
∗∗)

≤ en

(
(QGi

SJF∩Ei
)U ,D0((QGi

SJF∩Ei
, F ∩ Ei),U), (Y/Gi)U

)
≤ lim

U
en(QGi

SJF∩Ei
, F ∩ Ei, Y/Gi). (55)

Now let E ∈ Dim(F,X), G ∈ Cod(Y ). Since QG = Q∗∗
GKY , we have

en(QGSJF∩E, F ∩ E, Y/G) ≤ en(QGS, F, Y/G) ≤ en(KY S, F, Y
∗∗), (56)

and similarly,

en(QGSJF∩E, F ∩ E, Y/G) ≤ en(KY SJF∩E, F ∩ E, Y ∗∗)

≤ en(KY S, F, Y
∗∗). (57)

Combining (55–57) completes the proof of (48–50).
If S(F ∩ E) is precompact, then (51) follows from (50) and Lemma 4.1.

Using properties of Gelfand numbers, it was observed in [5] that for bounded
linear S ∈ L(X, Y )

en(S,BX , Y ) ≤ 2 sup
E∈Dim(F,X)

en(S|E,BE, Y ). (58)

As a first consequence of Proposition 4.2 we get a generalization of (58) to the
nonlinear situation.

Corollary 4.3. Let ∅ 6= F ⊂ X be open and S : F → Y continuous. Then

en(S, F, Y ) ≤ 2 sup
E∈Dim(F,X),G∈Cod(Y )

en(QGSJF∩E, F ∩ E, Y/G) (59)

en(S, F, Y ) ≤ 2 sup
G∈Cod(Y )

en(QGS, F, Y/G) (60)

en(S, F, Y ) ≤ 2 sup
E∈Dim(F,X)

en(SJF∩E, F ∩ E, Y ). (61)

Proof. Relations (59) and (60) follow from (8) of Lemma 2.1 and (48) and (49)
of Proposition 4.2. Similarly, (61) follows from (8) and (50), taking into account
that

en(KY SJF∩E, F ∩ E, Y ∗∗) ≤ en(SJF∩E, F ∩ E, Y ).
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The following corollary, which is a direct consequence of Proposition 4.2 and
Lemma 4.1, shows that under certain restrictions the factor 2 in Corollary 4.3
can be removed.

Corollary 4.4. Let ∅ 6= F ⊂ X be open and S : F → Y continuous. If S(F ) is
precompact or Y is 1-complemented in Y ∗∗, then

en(S, F, Y ) = sup
E∈Dim(F,X),G∈Cod(Y )

en(QGSJF∩E, F ∩ E, Y/G)

= sup
G∈Cod(Y )

en(QGS, F, Y/G)

= sup
E∈Dim(F,X)

en(SJF∩E, F ∩ E, Y ). (62)

Relation (62) confirms the ’at least’ part of a conjecture made in [5], see
relation (3) of that paper. Precisely, it was conjectured there that (62) holds if
S(F ) is precompact.

Now we turn to an example which will show the limitations of Corollaries 4.3
and 4.4. Let J1,0 : `1 → c0 be the identical embedding. Then Kc0J1,0 : `1 →
c∗∗0 = `∞ is the identical embedding of `1 into `∞. The following is inspired by
Proposition 11.11.10 of [9].

Proposition 4.5. For all n ∈ N0

en(J1,0,B`1 , c0) = 1 (63)

and for all n ∈ N
en(Kc0J1,0,B`1 , `∞) =

1

2
. (64)

Proof. Relation (64) is a direct consequence of (10) and [9], Propositions 11.11.10
and 11.5.3. The upper bound of (63) is obvious. To show the lower bound,
let N ∈ N ad

n (`1), N = (L1, . . . , Ln), ϕ ∈ Φn(c0). We assume that N satisfies
the conclusions of Lemma 3.1. Let U be a non-trivial ultrafilter on N and let
0 < δ < 1. Define

f1 = L1, f1 = (f1,i)
∞
i=1 ∈ `∞

a1 = (1− δ) lim
U
f1,i

f2 = L2( · , a1), f2 = (f2,i)
∞
i=1 ∈ `∞

a2 = (1− δ) lim
U
f2,i

. . . . . .

fn = Ln( · , a1, . . . , an−1), fn = (fn,i)
∞
i=1 ∈ `∞

an = (1− δ) lim
U
fn,i

and a = (a1, . . . , an). Since N satisfies the conclusions of Lemma 3.1, the set
{f1, . . . , fn} ⊂ `∞ is linearly independent. Using local reflexivity, Lemma 2.3, it
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follows that there exist xk = (xk,i)
∞
i=1 ∈ `1 (1 ≤ k ≤ n) with fj(xk) = δjk. For

i ∈ N let ei denote the i-th unit vector in `1 and define

yi = (1− δ)ei +
n∑

k=1

(ak − (1− δ)fk,i)xk.

Then for 1 ≤ j ≤ n and i ∈ N we have fj(yi) = aj, hence

N(yi) = a. (65)

Moreover,
lim
U
‖yi‖`1 = 1− δ. (66)

Let ϕ(a) = (ζi)
∞
i=1 ∈ c0. Then we have

lim
U
‖yi − ϕ(a)‖c0 ≥ lim

U

∣∣∣1− δ − ζi +
n∑

k=1

(ak − (1− δ)fk,i)xk,i

∣∣∣ = 1− δ. (67)

By (65–67), there is a set I0 ∈ U such that for i ∈ I0,

N(yi) = a, ‖yi‖`1 ≤ 1, ‖yi − ϕ(a)‖c0 ≥ 1− 2δ,

and we conclude
e(J1,0, ϕ ◦N,Bl1 , c0) ≥ 1− 2δ.

Since N,ϕ, and δ were arbitrary, the lower bound of (63) follows.

Proposition 4.5 shows that without the assumptions on S or Y , Lemma 4.1
does not hold, in general. The next result, which is also a consequence of Proposi-
tion 4.5, will be formulated for the open ball because it serves as a counterexample
to generalizations of Corollary 4.4. We note, however, that by (9) of Lemma 2.1,
for all S ∈ L(X, Y )

en(S,B◦X , Y ) = en(S,BX , Y ). (68)

Corollary 4.6. We have
en(J1,0,B◦`1 , c0) = 1, (69)

and

sup
E∈Dim(`1),G∈Cod(c0)

en(QGJ1,0JB◦`1∩E,B◦`1 ∩ E, c0/G)

= sup
G∈Cod(c0)

en(QGJ1,0,B◦`1 , c0/G) (70)

= sup
E∈Dim(`1)

en(J1,0JB◦`1∩E,B◦`1 ∩ E, c0) =
1

2
. (71)
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Proof. Relation (69) follows from (63) and (68). Similarly, relations (70–71)
follow from (48), (49), (51), (64), and (68), where we note that, because J is a
bounded linear operator, J(B◦`1 ∩ E) is precompact for all E ∈ Dim(`1).

Corollary 4.6 shows that the factor 2 in Corollary 4.3 is sharp and that, in
general, without the assumptions on S or Y , Corollary 4.4 does not hold. This
disproves the ’general version’ of the already mentioned conjecture in [5], relation
(3) (that is, the conjecture that (62) holds for all continuous operators).

5 Further results and comments

5.1 Another counterexample

Let us give an example along the same line as that in Proposition 4.5, which
shows that relation (51) in Proposition 4.2 may fail without the assumption of
precompactness of S(F ∩ E). Let X be any infinite dimensional normed space,
let F = B◦X , and let h : [0, 1) → c0 be defined as follows. We put

h

(
1− 1

i

)
= ei (i ∈ N),

where ei is the i-th unit vector in c0, and interpolate linearly within the intervals
[1−1/i, 1−1/(i+1)]. Clearly, h is continuous on [0, 1), h(t) ≥ 0, and ‖h(t)‖c0 ≤ 1
for all t ∈ [0, 1). Now we define S : B◦X → c0 by setting Sx = h(‖x‖) for x ∈ B◦X .
Let z0 = (1

2
, 1

2
, . . . ) ∈ `∞. Then ‖h(t)− z0‖`∞ ≤ 1/2, so

e0(Kc0S,B◦X , `∞) = 1/2

(the lower bound follows from ‖ei − ei+1‖`∞ = 1). Next we show that for any
n ∈ N0 and any E ⊂ X with n+ 1 ≤ dimE <∞

en(SJB◦X∩E,B◦X ∩ E, c0) = 1. (72)

Indeed. the upper bound is obvious. To check the lower bound, we fix n and E
and let N ∈ N ad

n (X), N = (L1, . . . , LN) and ϕ ∈ Φn(c0). Define f1, . . . , fn ∈ X∗

by

f1 = L1

fk = Lk( · , 0, . . . , 0) (2 ≤ k ≤ n).

Let x0 ∈ E be any element with ‖x0‖ = 1 and fk(x0) = 0 (k = 1, . . . , n). For any
t ∈ [0, 1) we have tx0 ∈ B◦X ∩ E and N(tx0) = 0, hence

sup
x∈B◦X∩E,N(x)=0

‖S(x)− ϕ(0)‖c0 ≥ sup
t∈[0,1)

‖S(tx0)− ϕ(0)‖c0

≥ sup
i∈N

‖ei − ϕ(0)‖c0 = 1,

which implies (72).
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5.2 More on the ultraproduct

Here we want to comment on the nonlinear ultraproduct construction and the
relation of the two domains of definition given in Section 2. First of all, we
introduce two concepts of the ultraproduct of a family of subsets. Let I be a
nonempty set, U an ultrafilter on I, Xi normed spaces and ∅ 6= Fi ⊂ Xi arbitrary
subsets (i ∈ I). Define (Fi)U ⊂ (Xi)U to be the set of all x ∈ (Xi)U such that
there exists a family (xi) ∈ `∞(I,Xi) with (xi)U = x and {i ∈ I : xi ∈ Fi} ∈ U .
Furthermore, define [Fi]U as the the set of all x ∈ (Fi)U such that each family
(xi) ∈ `∞(I, spanFi) with (xi)U = x satisfies {i ∈ I : xi ∈ Fi} ∈ U . By definition,

[Fi]U ⊂ (Fi)U ,

and if Fi = Xi for all i ∈ I, then [Fi]U = (Fi)U = (Xi)U . Furthermore,

[BXi
]U = B◦(Xi)U

and (BXi
)U = B(Xi)U .

Let Yi (i ∈ I) be normed spaces. As usual, we call a family of mappings
Si : Fi → Yi uniformly equicontinuous, if for each ε > 0 there is a δ > 0 such
that for all i and all x, y ∈ Fi with ‖x− y‖ ≤ δ we have ‖Si(x)−Si(y)‖ ≤ ε. The
family is said to be uniformly bounded, if for each c > 0 there is a C > 0 such
that for all i ∈ I and for all x ∈ Fi with ‖x‖ ≤ c we have ‖Si(x)‖ ≤ C.

It is easily checked that if (Si) is uniformly equicontinuous and uniformly
bounded, then

D0((Si, Fi),U) = [Fi]U (73)

D((Si, Fi),U) = (Fi)U . (74)

In particular, if Fi = BXi
for all i ∈ I, then

D0((Si,BXi
),U) = B◦(Xi)U

(75)

D((Si,BXi
),U) = B(Xi)U .

In view of (73) and (74) let us make some more comments on [Fi]U and (Fi)U .
We have the following relation between them, which shows that both definitions
are, in a sense, complementary:

[Fi]U ∩ ((spanFi) \ Fi)U = ∅
[Fi]U ∪ ((spanFi) \ Fi)U = (spanFi)U .

For the case of a countably incomplete ultrafilter U we can characterize [Fi]U as
follows.

Lemma 5.1. If U is countably incomplete, then [Fi]U consists of all x ∈ (Xi)U
such that there is a δ > 0 and a family (xi) ∈ `∞(I,Xi) with (xi)U = x and

{i ∈ I : xi + δBspan Fi
⊂ Fi} ∈ U . (76)
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Proof. Clearly, each x ∈ (Xi)U which satisfies (76) belongs to [Fi]U . Now let
x ∈ [Fi]U . We show that for each family (xi) ∈ `∞(I, spanFi) with (xi)U = x
there is a δ > 0 such that (76) holds. For this purpose, assume the contrary, that
is, there is a family (xi) ∈ `∞(I, spanFi) such that (xi)U = x and for each k ∈ N

Jk = {i ∈ I : (xi + k−1Bspan Fi
) \ Fi 6= ∅} ∈ U . (77)

We have Jk ⊃ Jk+1 (k ∈ N). Let (Ik)
∞
k=1 ⊂ U be such that I1 ⊃ I2 ⊃ . . . and

∩∞k=1Ik = ∅. Then Ik ∩ Jk ∈ U (k ∈ N) and ∩∞k=1(Ik ∩ Jk) = ∅. By (77), for
each i ∈ (Ik ∩ Jk) \ (Ik+1 ∩ Jk+1) we can find a yi ∈ spanFi with yi 6∈ Fi and
‖yi − xi‖ ≤ k−1. This defines yi for all i ∈ I1 ∩ J1. For i 6∈ I1 ∩ J1 we put
yi = 0. Then (yi) ∈ `∞(I, spanFi), (yi)U = (xi)U , but {i ∈ I : yi ∈ Fi} 6∈ U ,
contradicting the definition of [Fi]U .

5.3 The linear case

In this section we only consider bounded linear operators between Banach spaces.
For S ∈ L(X, Y ) we write en(S) instead of en(S,BX , Y ). Following Pietsch [9],
we say that a mapping, which assigns to each S ∈ L(X, Y ) and each n ∈ N0 a
real number sn(S), is an s-function, if the following conditions (78-82) hold:

For Banach spaces X,X1, Y, Y1, operators S, T ∈ L(X, Y ), U ∈ L(X1, X),
V ∈ L(Y, Y1), n ∈ N0

‖S‖ = s0(S) ≥ s1(S) ≥ · · · ≥ 0 (78)

sn(S + T ) ≤ sn(S) + ‖T‖ (79)

sn(V SU) ≤ ‖V ‖sn(S)‖U‖. (80)

If rank(S) ≤ n then
sn(S) = 0. (81)

If H is a Hilbert space with dim(H) ≥ n+ 1, then

sn(IH) = 1, (82)

where IH denotes the identity of H.

Corollary 5.2. The n-th minimal errors en constitute an s-function.

Proof. Relations (78), (79), and (81) are obvious consequences of the definition
of the en, while (80) follows from (7) and (9) of Lemma 2.1. Relation (82) follows
from Lemma 2.2 and the respective property of the Gelfand numbers.
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An s-function is called ultrastable (see [9], 11.10.5), if for all sets I, ultrafilters
U on I, families of Banach spaces Xi, Yi, operators Si ∈ L(Xi, Yi) (i ∈ I) with
limU ‖Si‖ <∞ and all n ∈ N0 we have

sn((Si)U) ≤ lim
U
sn(Si).

Corollary 5.3. The n-th minimal errors are ultrastable.

Proof. For Si ∈ L(Xi, Yi) with limU ‖Si‖ < ∞ and Fi = BXi
(i ∈ I) we have by

(75)
D0((Si,BXi

),U) = B◦(Xi)U
,

so by (68)
en((Si)U ,D0((Si,BXi

),U), (Yi)U) = en((Si)U).

Now the statement follows from Theorem 3.3.

An s-function is called regular (see [9], 11.7.1), if for all Banach spaces X, Y ,
all operators S ∈ L(X, Y ) and all n ∈ N0

sn(KY S) = sn(S).

An s-function is called maximal (see [9], 11.10.1 and 11.10.2), if for all Banach
spaces X, Y , all operators S ∈ L(X, Y ) and all n ∈ N0

en(S) = sup
E∈Dim(X),G∈Cod(Y )

en(QGSJE).

Corollary 5.4. The n-th minimal errors are neither regular nor maximal.

Proof. This is a direct consequence of Proposition 4.5, Corollary 4.6 and relation
(68).
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